Главная страница
Навигация по странице:

  • Что следует сказать миссионеру

  • Обращение с неточными понятиями требует, таким образом, известной осторожности. Не лучше ли тогда вообще отказаться от них

  • Ивин А. А. Логика,учебник. Учебное пособие Издание 2е Москва Издательство Знание содержание предисловие Глава 1


    Скачать 1.09 Mb.
    НазваниеУчебное пособие Издание 2е Москва Издательство Знание содержание предисловие Глава 1
    АнкорИвин А. А. Логика,учебник.doc
    Дата12.02.2018
    Размер1.09 Mb.
    Формат файлаdoc
    Имя файлаИвин А. А. Логика,учебник.doc
    ТипУчебное пособие
    #15496
    страница14 из 16
    1   ...   8   9   10   11   12   13   14   15   16
    § 3. Парадоксы Греллинга и Берри

    Интересный логический парадокс был открыт немецкими логиками К. Греллингом и Л. Нельсоном (парадокс Греллинга). Этот парадокс можно сформулировать очень просто.

    Аутологические и гетерологические слова

    Некоторые слова, обозначающие свойства, обладают тем самым свойством, которое они называют. Например, прилагательное «русское» само является русским, «многосложное» — само многосложное, а «пятислоговое» само имеет пять слогов. Такие слова, относящиеся к самим себе, называются самозначными, или аутологическими.

    Подобных слов не так много, в подавляющем большинстве прилагательные не обладают свойствами, которые они называют. «Новое» не является, конечно, новым, «горячее» — горячим, «однослоговое» — состоящим из одного слога, а «английское» — английским. Слова, не имеющие свойства, обозначаемого ими, называются инозначными, или гетерологтескими. Очевидно, что все прилагательные, обозначающие свойства, неприложимые к словам, будут гетерологическими.

    Это разделение прилагательных на две группы кажется ясным и не вызывает возражений. Оно может быть распространено и на существительные: «слово» является словом, «существительное» — существительным, но «часы» — это не часы и «глагол» — не глагол.

    Парадокс возникает, как только задается вопрос: к какой из двух групп относится само прилагательное «гетерологическое»? Если оно аутологическое, оно обладает обозначаемым им свойством и должно быть ге-терологическим. Если же оно гетерологическое, оно не имеет называемого им свойства и должно быть поэтому аутологическим. Налицо парадокс.

    По аналогии с этим парадоксом легко сформулировать другие парадоксы такой же структуры. Например, является или не является самоубийцей тот, кто убивает каждого несамоубийцу и не убивает ни одного самоубийцу?

    Оказалось, что парадокс Греллига был известен еще в средние века как антиномия выражения, не называющего самого себя. Можно представить себе отношение к софизмам и парадоксам в новое время, если проблема, требовавшая ответа и вызывавшая оживленные споры, оказалась вдруг забытой и была переоткрыта только пятьсот лет спустя!

    Еще одна, внешне простая антиномия была указана в самом начале нашего века Д. Берри.

    Множество натуральных чисел бесконечно. Множество же тех имен этих чисел, которые имеются, например, в русском языке и содержат меньше, чем, допустим, сто слов, является конечным. Это означает, что существуют такие натуральные числа, для которых в русском языке нет имен, состоящих менее чем из ста слов. Среди этих чисел есть, очевидно, наименьшее число. Его нельзя назвать посредством русского выражения, содержащего менее ста слов. Но выражение: «Наименьшее натуральное число, для которого не существует в русском языке его сложное имя, слагающееся менее чем из ста слов» является как раз именем этого числа! Это имя только что сформулировано в русском языке и содержит только девятнадцать слов. Очевидный парадокс: названным оказалось то число, для которого нет имени!

    § 4. Неразрешимый спор

    В основе одного знаменитого парадокса лежит как будто небольшое происшествие, случившееся две с лишним тысячи лет назад и не забытое до сих пор.

    У знаменитого софиста Протагора, жившего в V в. до нашей эры, был ученик по имени Еватл, обучавшийся праву. По заключенному между ними договору Еватл должен был заплатить за обучение лишь в том случае, если выиграет свой первый судебный процесс. Если же он этот процесс проиграет, то вообще не обязан платить. Однако, закончив обучение, Еватл не стал участвовать в процессах. Это длилось довольно долго, терпение учителя иссякло, и он подал на своего ученика в суд. Таким образом, для Еватла это был первый процесс. Свое требование Протагор обосновал так:

    — Каким бы ни было решение суда, Еватл должен будет заплатить мне. Он либо выиграет этот свой первый процесс, либо проиграет. Если выиграет, то заплатит в силу нашего договора. Если проиграет, то заплатит согласно этому решению.

    Судя по всему, Еватл был способным учеником, поскольку он ответил Протагору:

    — Действительно, я либо выиграю процесс, либо проиграю его. Если выиграю, решение суда освободит меня от обязанности платить. Если решение суда будет не в мою пользу, значит, я проиграл свой первый процесс и не заплачу в силу нашего договора.

    Решения парадокса "Протагор и Еватл"

    Озадаченный таким оборотом дела, Протагор посвятил этому спору с Еватлом особое сочинение «Тяжба о плате». К сожалению, оно, как и большая часть написанного Протагором, не дошло до нас. Тем не менее нужно отдать должное Протагору, сразу почувствовавшему за простым судебным казусом проблему, заслуживающую специального исследования.

    Г. Лейбниц, сам юрист по образованию, также отнесся к этому спору всерьез. В своей докторской диссертации «Исследование о запутанных казусах в праве» он пытался доказать, что все случаи, даже самые запутанные, подобно тяжбе Протагора и Еватла, должны находить правильное разрешение на основе здравого смысла. По мысли Лейбница, суд должен отказать Протагору за несвоевременностью предъявления иска, но оставить, однако, за ним право потребовать уплаты денег Еватлом позже, а именно после первого выигранного им процесса.

    Было предложено много других решений данного парадокса.

    Ссылались, в частности, на то, что решение суда должно иметь большую силу, чем частная договоренность двух лиц. На это можно ответить, что не будь этой договоренности, какой бы незначительной она ни казалась, не было бы ни суда, ни его решения. Ведь суд должен вынести свое решение именно по ее поводу и на ее основе.

    Обращались также к общему принципу, что всякий труд, а значит, и труд Протагора, должен быть оплачен. Но ведь известно, что этот принцип всегда имел исключения, тем более в рабовладельческом обществе. К тому же он просто неприложим к конкретной ситуации спора: ведь Протагор, гарантируя высокий уровень обучения, сам отказывался принимать плату в случае неудачи своего ученика в первом процессе.

    Иногда рассуждают так. И Протагор и Еватл — оба правы частично, и ни один из них в целом. Каждый из них учитывает только половину возможностей, выгодную для себя. Полное или всестороннее рассмотрение открывает четыре возможности, из которых только половина выгодна для одного из спорящих. Какая из этих возможностей реализуется, это решит не логика, а жизнь. Если приговор судей будет иметь большую силу, чем договор, Еватл должен будет платить, только если проиграет процесс, т.е. в силу решения суда. Если же частная договоренность будет ставится выше, чем решение судей, то Протагор получит плату только в случае проигрыша процесса Еватлу, т.е. в силу договора с Протагором.

    Эта апелляция к жизни окончательно все запутывает. Чем, если не логикой, могут руководствоваться судьи в условиях, когда все относящиеся к делу обстоятельства совершенно ясны? И что это будет за руководство, если Протагор, претендующий на оплату через суд, добьется ее, лишь проиграв процесс?

    Впрочем, и решение Лейбница, кажущееся вначале убедительным, немного лучше, чем неясное противопоставление логики и жизни. В сущности, Лейбниц предлагает задним числом заменить формулировку договора и оговорить, что первым с участием Еватла судебным процессом, исход которого решит вопрос об оплате, не должен быть суд по иску Протагора. Мысль эта глубокая, но не имеющая отношения к конкретному суду. Если бы в исходной договоренности была такая оговорка, нужды в судебном разбирательстве вообще не возникло бы.

    Если под решением данного затруднения понимать ответ на вопрос, должен Еватл уплатить Протагору или нет, то все эти, как и все другие мыслимые решения, являются, конечно, несостоятельными. Они представляют собой не более чем уход от существа спора, являются, так сказать, софистическими уловками и хитростями в безвыходной и неразрешимой ситуации. Ибо ни здравый смысл, ни какие-то общие принципы, касающиеся социальных отношений, не способны разрешить спор.

    Невозможно выполнить вместе договор в его первоначальной форме и решение суда, каким бы последнее ни было. Для доказательства этого достаточно простых средств логики. С помощью этих же средств можно также показать, что договор, несмотря на его вполне невинный внешний вид, внутренне противоречив. Он требует реализации логически невозможного положения: Еватл должен одновременно и уплатить за обучение, и вместе с тем не платить.

    Правила, заводящие в тупик

    Человеческому уму, привыкшему не только к своей силе, но и к своей гибкости и даже изворотливости, трудно, конечно, смириться с этой абсолютной безвыходностью и признать себя загнанным в тупик. Это особенно трудно тогда, когда тупиковая ситуация создается самим умом: он, так сказать, оступается на ровном месте и угождает в свои собственные сети. И тем не менее приходится признать, что иногда, и впрочем, не так уж редко, соглашения и системы правил, сложившиеся стихийно или введенные сознательно, приводят к неразрешимым, безвыходным положениям.

    Пример из недавней шахматной жизни еще раз подтвердит эту мысль.

    Международные правила проведения шахматных соревнований обязывают шахматистов записывать партию ход за ходом ясно и разборчиво. До недавнего времени в правилах было указано также, что шахматист, пропустивший из-за недостатка времени запись нескольких ходов, должен, «как только его цейтнот закончится, немедленно заполнить свой бланк, записав пропущенные ходы». На основе этого указания один судья на шахматной олимпиаде 1980 г. (Мальта) прервал проходившую в жестком цейтноте партию и остановил часы, заявив, что контрольные ходы сделаны и, следовательно, пора привести в порядок записи партий.

    — Но позвольте, — вскричал участник, находившийся на грани проигрыша и рассчитывавший только на накал страстей в конце партии, — ведь ни один флажок еще не упал и никто никогда (так тоже записано в правилах) не может подсказывать, сколько сделано ходов.

    Судью поддержал, однако, главный арбитр, заявивший, что, действительно, поскольку цейтнот закончился, надо, следуя букве правил, приступить к записи пропущенных ходов.

    Спорить в этой ситуации было бессмысленно: сами правила завели в тупик. Оставалось только изменить их формулировку таким образом, чтобы подобные случаи не могли возникнуть в будущем.

    Это и было сделано на проходившем в то же время конгрессе Международной шахматной федерации: вместо слов «как только цейтнот закончится» в правилах теперь записано: «как только флажок укажет на окончание времени».

    Этот пример наглядно показывает, как следует поступать в тупиковых ситуациях. Спорить о том, какая сторона права, бесполезно: спор неразрешим, и победителя в нем не будет. Остается только смириться с настоящим и позаботиться о будущем. Для этого нужно так переформулировать исходные соглашения или правила, чтобы они не заводили более никого в такую же безвыходную ситуацию.

    Разумеется, подобный способ действий — никакое не решение неразрешимого спора и не выход из безвыходного положения. Это скорее остановка перед непреодолимым препятствием и дорога в обход его.

    Парадокс «Крокодил и мать»

    В Древней Греции пользовался большой популярностью рассказ о крокодиле и матери, совпадающий по своему логическому содержанию с парадоксом «Протагор и Еватл».

    Крокодил выхватил у египтянки, стоявшей на берегу реки, ее ребенка. На ее мольбу вернуть ребенка крокодил, пролив, как всегда, крокодилову слезу, ответил:

    — Твое несчастье растрогало меня, и я дам тебе шанс получить назад ребенка. Угадай, отдам я его тебе или нет. Если ответишь правильно, я верну ребенка. Если не угадаешь, я его не отдам.

    Подумав, мать ответила:

    — Ты не отдашь мне ребенка.

    — Ты его не получишь, — заключил крокодил. — Ты сказала либо правду, либо неправду. Если то, что я не отдам ребенка, — правда, я не отдам его, так как иначе сказанное не будет правдой. Если сказанное — неправда, значит, ты не угадала, и я не отдам ребенка по уговору.

    Однако матери это рассуждение не показалось убедительным.

    — Но ведь если я сказала правду, то ты отдашь мне ребенка, как мы и договорились. Если же я не угадала, что ты не отдашь ребенка, то ты должен мне его отдать, иначе сказанное мною не будет неправдой.

    Кто прав: мать или крокодил? К чему обязывает крокодила данное им обещание? К тому, чтобы отдать ребенка или, напротив, чтобы не отдать его? И к тому и к другому одновременно. Это обещание внутренне противоречиво, и, таким образом, оно не выполнимо в силу законов логики.

    Миссионер очутился у людоедов и попал как раз к обеду. Они разрешают ему выбрать, в каком виде его съедят. Для этого он должен произнести какое-нибудь высказывание с условием, что, если это высказывание окажется истинным, они его сварят, а если оно окажется ложным, его зажарят.


    Что следует сказать миссионеру?

    Разумеется, он должен сказать: «Вы зажарите меня».

    Если его действительно зажарят, окажется, что он высказал истину, и значит, его надо сварить. Если же его сварят, его высказывание будет ложным, и его следует как раз зажарить. Выхода у людоедов не будет: из «зажарить» вытекает «сварить», и наоборот.

    Этот эпизод с хитрым миссионером является, конечно, еще одной из перефразировок спора Протагора и Еватла.

    Парадокс Санчо Пансы

    Один старый, известный еще в Древней Греции парадокс обыгрывается в «Дон Кихоте» М.Сервантеса. Санчо Панса сделался губернатором острова Баратария и вершит суд.

    Первым к нему является какой-то приезжий и говорит: — Сеньор, некое поместье делится на две половины многоводной рекой... Так вот, через эту реку переброшен мост, и тут же с краю стоит виселица и находится нечто вроде суда, в коем обыкновенно заседает четверо судей, и судят они на основании закона, изданного владельцем реки, моста и всего поместья, каковой закон составлен таким образом: «Всякий проходящий по мосту через сию реку долженствует объявить под присягою: куда и зачем он идет, и кто скажет правду, тех пропускать, а кто солжет, тех без всякого снисхождения отправлять на находящуюся тут же виселицу и казнить». С того времени, когда этот закон во всей своей строгости был обнародован, многие успели пройти через мост, и как скоро судьи удовлетворялись, что прохожие говорят правду, то пропускали их. Но вот однажды некий человек, приведенный к присяге, поклялся и сказал: он-де клянется, что пришел за тем, чтобы его вздернули вот на эту самую виселицу, и ни за чем другим. Клятва сия привела судей в недоумение, и они сказали: «Если позволить этому человеку беспрепятственно следовать дальше, то это будет означать, что он нарушил клятву и согласно закону повинен смерти; если же мы его повесим, то ведь он клялся, что пришел только за тем, чтобы его вздернули на эту виселицу, следовательно, клятва его, выходит, не ложна, и на основании того же самого закона надлежит пропустить его». И вот я вас спрашиваю, сеньор губернатор, что делать судьям с этим человеком, ибо они до сих пор недоумевают и колеблются...

    Санчо предложил, пожалуй, не без хитрости: ту половину человека, которая сказала правду, пусть пропустят, а ту, которая соврала, пусть повесят, и таким образом правила перехода через мост будут соблюдены по всей форме. Этот отрывок интересен в нескольких отношениях.

    Прежде всего он является наглядной иллюстрацией того, что с описанным в парадоксе безвыходным положением вполне может столкнуться — и не в чистой теории, а на практике — если не реальный человек, то хотя бы литературный герой.

    Выход, предложенный Санчо Панса, не был, конечно, решением парадокса. Но это было как раз то решение, к которому только и оставалось прибегнуть в его положении.

    Когда-то Александр Македонский вместо того, чтобы развязывать хитрый гордиев узел, чего еще никому не удалось сделать, просто разрубил его. Подобным же образом поступил и Санчо. Пытаться решить головоломку на ее собственных условиях было бесполезно — она попросту неразрешима. Оставалось отбросить эти условия и ввести свое.

    И еще один момент. Сервантес этим эпизодом явно осуждает непомерно формальный, пронизанный духом схоластической логики масштаб средневековой справедливости. Но какими распространенными в его время — а это было около четырехсот лет назад — были сведения из области логики! Не только самому Сервантесу известен данный парадокс. Писатель находит возможным приписать своему герою, безграмотному крестьянину, способность понять, что перед ним неразрешимая задача!

    § 5. Другие парадоксы

    Приведенные парадоксы — это рассуждения, итог которых — противоречие. Но в логике есть и другие типы парадоксов. Они также указывают на какие-то затруднения и проблемы, но делают это в менее резкой и бескомпромиссной форме. Таковы, в частности, парадоксы, рассматриваемые далее.

    Парадоксы неточных понятий

    Большинство понятий не только естественного языка, но и языка науки являются неточными, или, как их еще называют, размытыми. Нередко это оказывается причиной непонимания, споров, а то и просто ведет к тупиковым ситуациям.

    Если понятие неточное, граница области объектов, к которым оно приложимо, лишена резкости, размыта. Возьмем, к примеру, понятие «куча». Одно зерно (песчинка, камень и т.п.) — это еще не куча. Тысяча зерен — это уже, очевидно, куча. А три зерна? А десять? С прибавлением какого по счету зерна образуется куча? Не очень ясно. Точно так же, как не ясно, с изъятием какого зерна куча исчезает.

    Неточными являются эмпирические характеристики «большой», «тяжелый», «узкий» и т.д. Неточны такие обычные понятия, как «мудрец», «лошадь», «дом» и т.п.

    Нет песчинки, убрав которую мы могли бы сказать, что с ее устранением оставшееся уже нельзя назвать домом. Но ведь это означает как будто, что ни в какой момент постепенной разборки дом — вплоть до полного его исчезновения — нет оснований заявлять, что дома нет! Вывод явно парадоксальный и обескураживающий.

    Нетрудно заметить, что рассуждение о невозможности образования кучи проводится с помощью хорошо известного метода математической индукции. Одно зерно не образует кучи. Если п зерен не образуют кучи, то n+1 зерно не образуют кучи. Следовательно, никакое число зерен не может образовать кучи.

    Возможность этого и подобных ему доказательств, приводящих к нелепым заключениям, означает, что принцип математической индукции имеет ограниченную область приложения. Он не должен применяться в рассуждениях с неточными, расплывчатыми понятиями.

    Хорошим примером того, что эти понятия способны приводить к неразрешимым спорам, может служить любопытный судебный процесс, состоявшийся в 1927 г. в США. Скульптор К. Бранкузи обратился в суд с требованием признать свои работы произведениями искусства. В числе работ, отправляемых в Нью-Йорк на выставку, была и скульптура «Птица», которая сейчас считается классикой абстрактного стиля. Она представляет собой модулированную колонну из полированной бронзы около полутора метров высоты, не имеющую никакого внешнего сходства с птицей. Таможенники категорически отказались признать абстрактные творения Бранкузи художественными произведениями. Они провели их по графе «Металлическая больничная утварь и предметы домашнего обихода» и наложили на них большую таможенную пошлину. Возмущенный Бранкузи подал в суд.

    Таможню поддержали художники — члены Национальной академии, отстаивавшие традиционные приемы в искусстве. Они выступали на процессе свидетелями защиты и категорически настаивали на том, что попытка выдать «Птицу» за произведение искусства — просто жульничество.

    Этот конфликт рельефно подчеркивает трудность оперирования понятием «произведение искусства». Скульптура по традиции считается видом изобразительного искусства. Но степень подобия скульптурного изображения оригиналу может варьироваться в очень широких пределах. И в какой момент скульптурное изображение, все более удаляющееся от оригинала, перестает быть произведением искусства и становится «металлической утварью»? На этот вопрос так же трудно ответить, как на вопрос о том, где проходит граница между домом и его развалинами, между лошадью с хвостом и лошадью без хвоста и т.п. К слову сказать, модернисты вообще убеждены, что скульптура — это объект выразительной формы и она вовсе не обязана быть изображением.


    Обращение с неточными понятиями требует, таким образом, известной осторожности. Не лучше ли тогда вообще отказаться от них?

    Немецкий философ Э.Гуссерль был склонен требовать от знания такой крайней строгости и точности, какая не встречается даже в математике. Биографы Гуссерля с иронией вспоминают в связи с этим случай, произошедший с ним в детстве. Ему был подарен перочинный ножик, и, решив сделать лезвие предельно острым, он точил его до тех пор, пока от лезвия ничего не осталось.

    Более точные понятия во многих ситуациях предпочтительнее неточных. Вполне оправдано обычное стремление к уточнению используемых понятий. Но оно должно, конечно, иметь свои пределы. Даже в языке науки значительная часть понятий неточна. И это связано не с субъективными и случайными ошибками отдельных ученых, а с самой природой научного познания. В естественном языке неточных понятий подавляющее большинство; это говорит, помимо всего прочего, о его гибкости и скрытой силе. Тот, кто требует от всех понятий предельной точности, рискует вообще остаться без языка. «Лишите слова всякой двусмысленности, всякой неопределенности, — писал французский эстетик Ж. Жубер, — превратите их... в однозначные цифры — из речи уйдет игра, а вместе с нею — красноречие и поэзия: все, что есть подвижного и изменчивого в привязанностях души, не сможет найти своего выражения. Но что я говорю: лишите... Скажу больше. Лишите слова всякой неточности — и вы лишитесь даже аксиом».

    Долгое время и логики, и математики не обращали внимания на трудности, связанные с размытыми понятиями и соответствующими им множествами. Вопрос ставился так: понятия должны быть точными, а все расплывчатое недостойно серьезного интереса. В последние десятилетия эта чрезмерно строгая установка потеряла, однако, привлекательность. Построены логические теории, специально учитывающие своеобразие рассуждений с неточными понятиями.

    Активно развивается математическая теория так называемых размытых множеств, нечетко очерченных совокупностей объектов.

    Анализ проблем неточности — это шаг на пути сближения логики с практикой обычного мышления. И можно предполагать, что он принесет еще многие интересные результаты.

    Парадоксы индуктивной логики

    Нет, пожалуй, такого раздела логики, в котором не было бы своих собственных парадоксов.

    В индуктивной логике есть свои парадоксы, с которыми активно, но пока без особого успеха борются уже почти полвека. Особенно интересен парадокс подтверждения, открытый американским философом К.Гемпелем. Естественно считать, что общие положения, в частности научные законы, подтверждаются своими положительными примерами. Если рассматривается, скажем, высказывание «Все А есть В», то положительными его примерами будут объекты, обладающие свойствами А и В. В частности, подтверждающие примеры для высказывания «Все вороны черные» — это объекты, являющиеся и воронами, и черными. Данное высказывание равносильно, однако, высказыванию «Все предметы, не являющиеся черными, не вороны», и подтверждение последнего должно быть также подтверждением первого. Но «Все не черное не ворона» подтверждается каждым случаем не черного предмета, не являющегося вороной. Выходит, таким образом, что наблюдения «Корова белая», «Ботинки коричневые» и т.п. подтверждают высказывание «Все вороны черные».

    Из невинных, казалось бы, посылок вытекает неожиданный парадоксальный результат.

    В логике норм беспокойство вызывает целый ряд ее законов. Когда они формулируются в содержательных терминах, несоответствие их обычным представлениям о должном и запрещенном становится очевидным. Например, один из законов говорит, что из распоряжения «Отправьте письмо!» вытекает распоряжение «Отправьте письмо или сожгите его!».

    Другой закон утверждает, что, если человек нарушил одну из своих обязанностей, он получает право делать все, что угодно. С такого рода «законами долженствования» наша логическая интуиция никак не хочет мириться.

    В логике знания усиленно обсуждается парадокс логического всеведения. Он утверждает, что человек знает все логические следствия, вытекающие из принимаемых им положений. Например, если человеку известны пять постулатов геометрии Евклида, то, значит, он знает и всю эту геометрию, поскольку она вытекает из них. Но это не так. Человек может соглашаться с постулатами и вместе с тем не уметь доказать теорему Пифагора и потому сомневаться, что она вообще верна.

    1   ...   8   9   10   11   12   13   14   15   16
    написать администратору сайта