Главная страница
Медицина
Экономика
Финансы
Биология
Сельское хозяйство
Ветеринария
Юриспруденция
Право
Языки
Языкознание
Философия
Логика
Этика
Религия
Физика
Политология
Социология
История
Искусство
Культура
Математика
Информатика
Энергетика
Промышленность
Химия
Вычислительная техника
Автоматика
Электротехника
Связь
Экология
Геология
Начальные классы
Механика
Доп
образование
Строительство
Воспитательная работа
Русский язык и литература
Другое
Классному руководителю
Дошкольное образование
Казахский язык и лит
Физкультура
Технология
География
Школьному психологу
Иностранные языки
Директору, завучу
Астрономия
Музыка
ОБЖ
Обществознание
Социальному педагогу
Логопедия

Морган-Клиническая_анестезиология_книга_1. Книга первая Дж. Эдвард Морганмл. Мэгид С. Михаил Перевод с английского под редакцией


Скачать 30.52 Mb.
НазваниеКнига первая Дж. Эдвард Морганмл. Мэгид С. Михаил Перевод с английского под редакцией
АнкорМорган-Клиническая_анестезиология_книга_1.doc
Дата12.01.2018
Размер30.52 Mb.
Формат файлаdoc
Имя файлаМорган-Клиническая_анестезиология_книга_1.doc
ТипКнига
#13926
страница5 из 57
1   2   3   4   5   6   7   8   9   ...   57

Глава 3 Дыхательные контуры


Дыхательные контуры обеспечивают последний этап доставки газовой смеси к больному. В совре­менной анестезиологической практике дыхатель­ные контуры соединяют дыхательные пути больного с наркозным аппаратом (рис. 3-1). Существует мно­го модификаций дыхательных контуров, которые различаются по эффективности, сложности и удоб­ству пользования. В данной главе рассмотрены наи­более важные дыхательные контуры: инсуффляция, открытый контур, контуры Мэйплсона, реверсив­ный контур и реанимационные дыхательные мешки (или реанимационные дыхательные контуры).

Традиционные варианты классификации дыха­тельных контуров искусственно объединяют функ­циональные аспекты (например, степень рецирку­ляции) и механические характеристики (наличие направляющих клапанов). Такие, нередко противо­речивые, классификации (например, открытый, за­крытый, полуоткрытый или полузакрытый контур) больше вызывают путаницу, нежели способствуют пониманию, поэтому они не обсуждаются.

Инсуффляция

Термин "инсуффляция" означает вдувание дыха­тельной смеси в дыхательные пути без непосред­ственного контакта больного с дыхательным кон­туром. Хотя инсуффляция определяется как разновидность дыхательного контура, ее следует рассматривать как методику, позволяющую избе­гать прямого контакта дыхательного контура с ды­хательными путями. Поскольку дети сопротивля­ются наложению лицевой маски или установке внутривенного катетера, инсуффляция особенно часто используется в педиатрической практике при индукции ингаляционными анестетиками (рис. 3-2). Она вполне применима и в других ситу­ациях. Углекислый газ, накапливаясь под операци­онным бельем около головы и шеи, представляет опасность при офтальмологических операциях, выполняемых под местной анестезией. Инсуффля­ция высокого потока (> 10 л/мин) воздушно-кис­лородной смеси (рис. 3-3) позволяет избежать этого осложнения.



Рис. 3-1. Подключение больного через дыхательный контур к наркозному аппарату



Рис. 3-2. Инсуффляция ингаляционного анестетика ребенку при индукции анестезии

Поскольку при инсуффляции нет прямого контакта с больным, выдыхаемая смесь не поступает снова в дыхательные пути. Вместе с тем при этой методике невозможно управлять вентиляцией, а вдыхаемая смесь содержит непред­сказуемое количество атмосферного воздуха.

Инсуффляцию целесообразно использовать для поддержания артериальной оксигенации при кратковременном апноэ (например, во время брон­хоскопии). При этом кислород направляют не в лицо, а непосредственно в легкие через эндотрахе-альный катетер.

Капельная масочная анестезия (открытый дыхательный контур)

Здесь дано лишь краткое описание капельной ма-сочной анестезии, поскольку в настоящее время ее продолжают применять лишь в развивающихся странах. На лицо больного накладывают так назы­ваемую маску Шиммельбуша (Schimmelbusch), по­крытую несколькими слоями марли, на нее капают легкоиспаряющийся анестетик — чаще всего эфир или галотан. Во время вдоха воздух проходит через марлю и, насытившись парами анестетика, посту­пает в дыхательные пути. Процесс испарения сни­жает температуру маски, что приводит к конденса­ции влаги и снижению давления насыщенного пара анестетика (давление насыщенного пара пря­мо пропорционально температуре).



Рис. 3-3. Инсуффляция кислорода и воздуха под операционное белье

Углубление анестезии снижает минутную вен­тиляцию, что приводит к порочному кругу: маска согревается, давление насыщенного пара увеличи­вается, концентрация анестетика во вдыхаемой смеси становится еще выше. Если под маской на­капливается достаточно большое количество угле­кислого газа (аппаратное "мертвое пространство"), то значительная доля выдыхаемой смеси поступа­ет в дыхательные пути повторно. Кроме того, пары анестетика снижают фракционную концентрацию кислорода во вдыхаемой смеси (эффект разведе­ния), что создает риск гипоксии. Чтобы уменьшить "мертвое пространство" и повысить фракционную концентрацию кислорода во вдыхаемой смеси, сле­дует дополнительно подавать кислород под маску. Другая особенность капельной масочной ане­стезии — неконтролируемое загрязнение среды операционной парами анестетика — является очень серьезным недостатком при использовании легко­воспламеняющихся препаратов (например, эфира).

Контуры Мэйплсона

Инсуффляция и капельная масочная анестезия имеют ряд недостатков: невозможно точно дозиро­вать анестетик и, соответственно, сложно управ­лять глубиной анестезии; нельзя проводить вспо­могательную или принудительную ИВЛ; отсутствует возможность использования тепла и влаги выдыхаемой смеси; затруднено поддержание проходимости дыхательных путей при операциях на голове и шее; воздух в операционной загрязня­ется выдыхаемой в больших объемах смесью. В контурах Мэйплсона (Mapleson) ряд этих про­блем разрешен с помощью дополнительных ком­понентов (дыхательные трубки, подача свежего газа, предохранительные клапаны, дыхательный мешок). Взаимное расположение этих компонен­тов определяет режим работы контура и служит основой для классификации (табл. 3-1).

Компоненты контура Мэйплсона

А. Дыхательные шланги. Гофрированные дыха­тельные шланги, изготовленные из резины (много­разового использования) или пластика (одноразо­вые), соединяют компоненты системы Мэйплсона между собой и обеспечивают подсоединение к боль­ному (рис. 3-4). Шланги большого диаметра (22 мм) обеспечивают низкое сопротивление потоку газа и служат потенциальными резервуарами ингаляци­онных анестетиков. Чтобы максимально снизить потребность в свежей дыхательной смеси, объем ды­хательных шлангов в большинстве контуров Мэйпл­сона должен быть не ниже дыхательного объема.

Растяжимость дыхательных шлангов частично определяет растяжимость всего контура. (Растя­жимость определяют как изменение объема на еди­ницу изменения давления.) Длинные шланги с вы­сокой растяжимостью увеличивают разницу между объемом смеси, подаваемым в контур дыха­тельным мешком или аппаратом, и объемом, по­ступающим в дыхательные пути больного. Напри­мер, если в дыхательном контуре с растяжимостью 8 мл/см вод. ст. при прохождении дыхательной смеси будет развиваться давление 20 см вод. ст., то 160 мл дыхательного объема будут "потеряны" в контуре. Эти 160 мл потери объема складываются из сжатия газа и расширения дыхательных шлан­гов. Рассмотренный феномен особенно важен, если проводят ИВЛ под положительным давлением (например, в реверсивном дыхательном контуре).

Б. Патрубок для подачи свежей дыхательной смеси. Свежая дыхательная смесь из наркозного аппарата подается в дыхательный контур через специальный патрубок. Как будет рассмотрено чуть позже, местоположение патрубка для подачи свежей дыхательной смеси является главным от­личительным признаком для классификации кон­туров Мэйплсона.

В. Предохранительный клапан (сбрасываю­щий клапан, регулируемый клапан ограничения давления). Если поступление дыхательной смеси превышает расход (на потребление больным и за­полнение контура), то давление внутри дыхатель­ного контура возрастает. Этот рост давления ниве­лируется удалением избытка дыхательной смеси из контура через предохранительный клапан. Уда­ляемый газ поступает в атмосферу операционной или, что предпочтительнее, в специальную систе­му отвода отработанных медицинских газов. Во всех предохранительных клапанах давление сбро­са можно регулировать.

При самостоятельном дыхании предохрани­тельный клапан должен быть полностью открыт, с тем чтобы давление в контуре лишь незначитель­но изменялось во все фазы дыхательного цикла. Вспомогательная и принудительная ИВЛ требуют положительного давления на вдохе. Частичное закрытие предохранительного клапана ограничи­вает сброс дыхательной смеси, позволяя создать положительное давление в контуре при сжатии дыхательного мешка.

Г. Дыхательный мешок (мешок-резервуар). Дыхательный мешок функционирует как резер­вуар дыхательной смеси; он также необходим для обеспечения положительного давления при ИВЛ. По мере заполнения растяжимость мешка увели­чивается. В этом процессе можно отчетливо выделить три фазы (рис. 3-5). После заполнения ды­хательного мешка для взрослых объемом в 3 л (I фаза) давление быстро возрастает до пиковых значений (II фаза). При дальнейшем повышении объема давление достигает плато или даже немно­го снижается (III фаза). Этот эффект позволяет предохранить легкие от баротравмы в том случае, если предохранительный клапан непреднамерен­но закрыт, а свежая дыхательная смесь продолжа­ет поступать в контур.





Рис. 3-4. Компоненты контура Мэйплсона

Функциональные характеристики контуров Мэйплсона

Контуры Мэйплсона легкие, недорогие, простые и не требуют применения направляющих клапанов. Эффективность дыхательного контура измеряется скоростью потока свежей дыхательной смеси, не­обходимой для предотвращения рециркуляции уг­лекислого газа (т. е. повторного поступления его в дыхательные пути). Поскольку в контурах Мэйпл­сона не предусмотрены направляющие клапаны и адсорберы CO2, рециркуляцию предотвращают путем сброса выдыхаемой смеси через предохра­нительный клапан до вдоха. Обычно это возможно при большом потоке свежей дыхательной смеси.

Вновь рассмотрим схему контура Мэйплсона А на рис. 3-4. При самостоятельном дыхании альвео­лярный газ, содержащий CO2, будет поступать в ды­хательный шланг или сбрасываться в атмосферу че­рез открытый предохранительный клапан. Если поток свежей дыхательной смеси превышает альве­олярный минутный объем дыхания (МОД), то пе­ред вдохом оставшийся в дыхательном шланге аль­веолярный газ будет вытесняться в атмосферу через предохранительный клапан. Если объем дыхатель­ного шланга равен дыхательному объему или пре­вышает его, то последующий вдох будет содержать только свежую дыхательную смесь. Поскольку по­ток свежей дыхательной смеси, равный МОД, позво­ляет избежать рециркуляции, то эффективность контура Мэйплсона А — самая высокая среди конту­ров Мэйплсона при самостоятельном дыхании.


Рис. 3-5. Увеличение растяжимости дыхательного меш­ка при заполнении дыхательной смесью: трехфазная ди­намика. (Из: Johnstone R. E., Smith T. С. Rebreathing bags as pressure limiting devices. Anesthesiology, 1973; 38: 192. Воспроизведено с разрешения.)

Во время принудительной ИВЛ для создания положительного давления требуется частичное закрытие предохранительного клапана. Хотя часть выдыхаемого (альвеолярного) газа и свежей дыха­тельной смеси выходит через клапан во время вдо­ха, во время выдоха смесь не сбрасывается. В ре­зультате во время принудительной ИВЛ для предотвращения рециркуляции в контуре Мэйплсона А требуется непредсказуемо большой поток свежей дыхательной смеси (превышающий МОД более чем в 3 раза).

Изменение положения предохранительного кла­пана и патрубка для подачи свежей дыхательной смеси трансформирует контур Мэйплсона А в кон-тур Мэйплсона D(см. табл. 3-1). Контур Мэйплсо­на D эффективен при принудительной ИВЛ, так как поток свежей дыхательной смеси оттесняет вы­дыхаемую смесь от больного к предохранительно­му клапану. Таким образом, простое изменение мес­тоположения компонентов системы Мэйплсона изменяет потребности в свежей дыхательной смеси.

Контур Бэйна является распространенной мо­дификацией контура Мэйплсона D и характеризует­ся размещением патрубка подачи свежей дыхатель­ной смеси внутри дыхательного шланга (рис. 3-6). Данная модификация уменьшает размеры контура и позволяет лучше, чем в контуре Мэйплсона D, со­хранить тепло и влагу путем частичного согревания вдыхаемой смеси за счет противоточного обмена с теплыми выдыхаемыми газами. Недостаток этого коаксиального контура — риск перекручивания или отсоединения патрубка подачи свежей дыхательной смеси. Если любая из этих неисправностей останет­ся необнаруженной, то результатом будет значи­тельная рециркуляция выдыхаемой смеси.

Реверсивные контуры

Хотя в контурах Мэйплсона устранены многие не­достатки инсуффляции и капельной масочной ане­стезии, их использование сопряжено с высокой скоростью потока свежей дыхательной смеси (для предотвращения рециркуляции), что приводит к расточительному использованию анестетика, за­грязнению воздуха операционной и потере тепла и влажности дыхательной смеси (табл. 3-2). Для раз­решения этих задач предложен реверсивный ды­хательный контур, в состав которого введены до­полнительные компоненты.

Компоненты реверсивного контура

А. Сорбенты углекислого газа. Рециркуляция альвеолярного газа (т. е. выдыхаемой смеси) по­зволяет сохранять тепло и влагу. При этом для пре­дупреждения гиперкапнии из выдыхаемой смеси необходимо удалить CO2. При химической реак­ции углекислого газа с водой образуется угольная кислота. Сорбенты углекислого газа (например, натронная известь, а также известь с добавкой гид-роксида бария) содержат гидроксиды металлов, способные нейтрализовать угольную кислоту (табл. 3-3). Конечными продуктами реакции явля­ются теплота (выделяется при нейтрализации), вода pi кальция карбонат. Натронная известь наиболее распространенный сорбент, 100 г ее могут адсорбировать 23 л углекислого газа. При этом протекают следующие химические реакции:

CO2+H2O H2CO3

H2CO3 + 2NaOH Na2CO3 + 2H2O + теплота (быстрая реакция)

Na2CO3 + Ca(OH)2 CaCO3 + 2NaOH (медленная реакция)

Следует отметить, что вода и гидроксид натрия, необходимые вначале, регенерируют в ходе даль­нейших химических реакций.



Рис. 3-6. Контур Бэйна является разновидностью контура Мэйплсона D с трубкой подачи свежей дыхательной смеси, размещенной в гофрированном дыхательном шланге. (Из: Bain J. A., Spoerel W. E. Flow requirements for a modified Mapleson D system during controlled ventilation. Can. Anaest. Soc. J., 1973; 20: 629. Воспроизведено с разрешения.)

ТАБЛИЦА 3-2. Характеристики дыхательных контуров




Инсуффляция и масочная капельная анестезия (открытый контур)

Контуры Мэйплсона

Реверсивные контуры

Сложность устройства

Управление глубиной анестезии

Отвод отработанных газов

Сохранение тепла и влажности

Рециркуляция выдыхаемой смеси

Очень простое

Чрезвычайно затруднено

Чрезвычайно затруднен

Отсутствует

Отсутствует

Простое

Иногда возможно

Иногда возможен

Отсутствует

Отсутствует

Сложное

Всегда осуществимо

Всегда возможен

Имеется1

Имеется1

1 Данные характеристики зависят от скорости потока свежей дыхательной смеси.

В сорбент добавляют индикатор рН. Измене­ние цвета индикатора, обусловленное увеличени­ем концентрации ионов водорода, сигнализирует об истощении сорбента (табл. 3-4). Сорбент следу­ет менять, если 50-70 % его объема изменило ок­раску. Хотя использованные гранулы могут воз­вращаться к исходной окраске после некоторой паузы, существенного восстановления сорбцион-ной емкости не происходит. Размер гранул опреде­ляется компромиссом между высокой абсорбиру­ющей поверхностью маленьких гранул и низким сопротивлением газовому потоку более крупных гранул. Гидроксиды раздражают кожу и слизис­тые оболочки. Добавление кремнезема повышает плотность натронной извести, что уменьшает риск ингаляции пыли гидроксида натрия. Поскольку в структуру гидроксида бария инкорпорирована вода (вода кристаллизации), то содержащая его из­весть обладает достаточной плотностью и без до­бавления кремнезема. В процессе изготовления перед упаковкой в оба типа сорбента добавляют воду, что создает оптимальные условия для обра­зования угольной кислоты. Применяемая в меди­цине натронная известь содержит 14-19 % воды.

Гранулы сорбента могут адсорбировать и затем высвобождать значительные количества ингаляци­онных анестетиков. Эта особенность может объяс­нить замедленную индукцию pi выход из анестезии. Трихлорэтилен (анестетик, в настоящее время не применяемый в США) при контакте с натронной известью и воздействии тепла разлагается с образо­ванием нейротоксинов (включая фосген). Вслед­ствие этой токсической реакции могут возникать послеоперационные энцефалиты и параличи череп­ных нервов. Чем суше патронная известь, тем выше ее способность адсорбировать ингаляционные ане­стетики и вступать с ними в химические реакции.

Б. Адсорберы углекислого газа. Гранулами сорбента заполняют один или два контейнера, плотно пригнанные между верхней и нижней крышками. Вся эта конструкция называется ад­сорбером (рис. 3-7). Двойные контейнеры, единственным недостатком которых является некото­рая громоздкость, обеспечивают более полную ад­сорбцию углекислого газа, менее частую замену сорбента и меньшее сопротивление газовому потоку.

ТАБЛИЦА 3-3. Параметры сорбентов углекислого газа: натронная известь и известь с добавкой гидроксида бария

Параметр

Натронная известь

Известь с добавкой гидроксида бария

Калибр гранул1

Способ уплотнения

Состав

Индикатор

Емкость сорбента

(л CO2/ 100 г сорбента)


4-8

Добавление кремнезема

Гидроксид кальция

Гидроксид натрия

Гидроксид калия

Этиловый фиолетовый

14-23


4-8

Вода кристаллизации

Гидроксид бария

Гидроксид кальция
Этиловый фиолетовый

9-18


1 Количество отверстий в проволочной сетке для сортировки гранул сорбента, приходящееся на 1 линейный дюйм.

ТАБЛИЦА 3-4. Изменение цвета индикатора, свидетельствующее об истощении сорбента

Индикатор

Цвет свежего сорбента

Цвет истощенного сорбента

Этиловый фиолетовый

Белый

Пурпурный

Фенолфталеин

Белый

Розовый

Клейтонский желтый

Красный

Желтый

Этиловый оранжевый

Оранжевый

Желтый

Мимоза 2

Красный

Белый

Для обеспечения полной адсорбции CO2 пода­ваемый дыхательный объем не должен превышать объема свободного пространства между гранулами сорбента, что приблизительно соответствует поло­вине емкости адсорбера. За цветом индикатора наблюдают через прозрачные стенки адсорбера.



Рис. 3-7. Схема адсорбера углекислого газа

Адсорбер истощается неравномерно, прежде всего это происходит рядом с местом поступления вы­дыхаемой смеси в адсорбер, а также вдоль гладких внутренних стенок. Перемешивание (например, путем поворота адсорбера) позволяет избежать об­разования каналов между неплотно уложенными гранулами в областях повышенного расхода сор­бента. Ловушка в основании адсорбера улавливает пыль и влагу. Некоторые старые конструкции снабжены обходным клапаном, позволяющим про­изводить замену адсорбера, не прерывая ИВЛ. Но при недосмотре, когда клапан длительное время направляет дыхательную смесь в обход адсорбера, развивается гиперкапния.

В. Направляющие клапаны. Направляющие клапаны содержат диск (резиновый, пластиковый или слюдяной), который лежит на седле клапана (рис. 3-8). Притекающий поток смещает диск вверх, и газовая смесь поступает дальше в дыха­тельный контур. Обратный поток прижимает диск к седлу клапана, предупреждая ретроградный за­брос смеси. Несостоятельность клапана обычно обусловлена деформацией диска или неровностя­ми седла клапана. Особенно уязвимы клапаны вы­доха, так как они подвержены воздействию влаги, содержащейся в выдыхаемой смеси.

При вдохе открывается клапан вдоха и в дыха­тельные пути поступает смесь, состоящая из свеже­го газа и выдыхаемого, прошедшего через адсорбер. Одновременно закрывается клапан выдоха, препят­ствуя рециркуляции выдыхаемой смеси, еще не прошедшей через адсорбер. При выдохе открывает­ся клапан выдоха и выдыхаемая смесь сбрасывается через предохранительный клапан или вновь посту­пает в контур, предварительно пройдя через адсор­бер. Клапан вдоха в фазе выдоха закрыт, что препятствует смешиванию выдыхаемой смеси со свежей в инспираторном колене контура. Наруше­ние функции любого направляющего клапана вызы­вает рециркуляцию CO2 и гиперкапнию.



Рис. 3-8. Направляющий клапан (клапан рециркуляции)

Оптимизация конструкции реверсивного контура

Хотя главные компоненты реверсивного контура (направляющие клапаны, патрубок подачи свежей дыхательной смеси, предохранительный клапан, адсорбер и дыхательный мешок) можно размес­тить различным способом, целесообразно соблю­дать следующие принципы:

Направляющие клапаны рекомендуется раз­мещать как можно ближе к больному для предотвращения попадания выдыхаемой сме­си в инспираторное колено при утечках в кон­туре. Вместе с тем направляющие клапаны не следует располагать в Y-образных коннекто­рах дыхательных шлангов, так как это затруд­няет наблюдение анестезиолога за функцио­нированием контура.

Патрубок подачи свежей дыхательной смеси следует разместить между адсорбером и кла­паном вдоха, что предупреждает нежелатель­ное попадание свежей дыхательной смеси к больному в фазе выдоха с последующим сбросом из контура. Расположение патрубка

между клапаном выдоха и адсорбером вызы­вает подмешивание рециркулирующего газа к свежей дыхательной смеси. Кроме того, ин­галяционные анестетики могут сорбировать­ся и высвобождаться гранулами натронной извести, что замедляет индукцию анестезии и пробуждение после операции.

Предохранительный клапан следует размес­тить непосредственно перед адсорбером (если смотреть по ходу движения дыхательной сме­си). Такое расположение позволяет эконо­мить сорбент и сводит к минимуму сброс све­жей дыхательной смеси.

• Сопротивление выдоху снижается при распо­ложении дыхательного мешка в экспиратор­ном колене контура. Сдавление мешка при принудительной вентиляции способствует сбросу выдыхаемой смеси через предохрани­тельный клапан, что экономит сорбент.

Функциональные характеристики реверсивного контура

А. Потребность в свежей дыхательной смеси. Ад­сорбер предотвращает рециркуляцию CO2, даже если поток свежей дыхательной смеси равен расхо­ду (на заполнение контура и поглощение анестети­ков и кислорода организмом больного), как при ане­стезии по закрытому контуру. Если поток свежего газа превышает 5 л/мин, то рециркуляция угле­кислого газа столь ничтожна, что необходимость в адсорбере обычно отпадает.

При низкой скорости потока концентрация кислорода и ингаляционного анестетика в свежей дыхательной смеси (т. е. на уровне патрубка пода­чи) и во вдыхаемой смеси (т. е. в инспираторном колене дыхательного шланга) может значительно отличаться. Вдыхаемая смесь образуется при сме­шивании свежего газа и рециркулирующего, про­шедшего через адсорбер. Высокая скорость потока ускоряет индукцию и выход из анестезии, компен­сирует утечки из контура и снижает риск непред­виденных смешений газов.



Рис. 3-9. Реверсивный дыхательный контур

Б. "Мертвое пространство". Направляющие кла­паны ограничивают аппаратное "мертвое простран­ство" в реверсивном контуре объемом, расположен­ным дистальнее места смешения инспираторного и экспираторного потоков в Y-образном коннекторе. В отличие от контуров Мэйплсона в реверсивном контуре длина дыхательных шлангов не оказывает не­посредственного влияния на объем аппаратного "мерт­вого пространства". Подобно контурам Мэйплсона, длина шлангов влияет на растяжимость контура и, соответственно, на величину потери дыхательного объема при ИВЛ под положительным давлением. Ре­версивные контуры для детей снабжены перегород­кой, разделяющей инспираторный и экспираторный потоки в Y-образном коннекторе, а также малорастя­жимыми дыхательными шлангами: эти усовершен­ствования уменьшают "мертвое пространство".

В. Сопротивление. Направляющие клапаны и ад­сорбер повышают сопротивление реверсивного кон­тура, особенно при высоком потоке свежей дыхатель­ной смеси и большом дыхательном объеме. Тем не менее, даже у недоношенных детей при ИВЛ успеш­но применяют реверсивный дыхательный контур.

Г. Сохранение влаги и тепла. Система меди­цинского газоснабжения доставляет в контур нар­козного аппарата неувлажненные газы комнатной

температуры. В то же время выдыхаемая смесь на­сыщена влагой и имеет температуру тела. Следова­тельно, температура и влажность вдыхаемой смеси зависят от соотношения в ней рециркулирующего и свежего газа. Высокая скорость потока (5 л/мин) сопряжена с низкой относительной влажностью, тогда как для низкой скорости (< 0,5 л/мин) ха­рактерно высокое насыщение водой. В реверсив­ном контуре существенным источником тепла и влаги являются гранулы сорбента.

Д. Бактериальное загрязнение. Существует небольшой риск колонизации компонентов ревер­сивного контура микроорганизмами, что теорети­чески может вызвать легочную инфекцию. Поэто­му иногда в инспираторный и экспираторный дыхательные шланги устанавливают бактериаль­ные фильтры.

Недостатки реверсивного контура

Хотя в реверсивном контуре устранено подавляю­щее большинство недостатков контуров Мэйпл­сона, усовершенствование само по себе приводит к новым проблемам: большие размеры и непорта­тивность; большое количество компонентов сопро­вождается увеличением риска их разъединения и дисфункции; высокое сопротивление ограничи­вает применение контура в педиатрии; непредска­зуемая концентрация газов во вдыхаемой смеси при низкой скорости потока свежего газа.

Реанимационные дыхательные мешки

Реанимационные дыхательные мешки (мешки Амбу, комплект маска-мешок) обычно применяе­мые в критических ситуациях для обеспечения вентиляции, просты, портативны и способны обеспечить почти 100 % фракционную концентра­цию кислорода во вдыхаемой смеси (рис. 3-10).



Рис. 3-10. Реанимационный дыхательный мешок Лаердала. (С разрешения Laerdal Medical Corp.)

Реанимационные дыхательные мешки отличают­ся от контуров Мэйплсона и реверсивных конту­ров, так как имеют нереверсивные клапаны. (Вспомните, что контур Мэйплсона считается бесклапанным, хотя и имеет предохранительный клапан, а реверсивный контур содержит направляющие клапаны, которые направляют поток через адсорбер и обеспечивают рециркуляцию вы­дыхаемой смеси.)

Через ниппель для подачи свежей дыхатель­ной смеси можно обеспечить доставку вдыхаемой смеси с высокой концентрацией кислорода к мас­ке или эндотрахеальной трубке — как при само­стоятельном дыхании, так и при принудительной вентиляции. Во время самостоятельного или при­нудительного вдоха нереверсивный дыхательный клапан открывается и обеспечивает поступление дыхательной смеси из мешка к больному. Рецир­куляция предотвращается сбрасыванием выдыха­емого газа в атмосферу через порт выдоха в этом же клапане. Сжимаемый саморасправляющийся дыхательный мешок содержит также впускной клапан. Этот клапан закрывается при сдавлении мешка, обеспечивая возможность вентиляции под положительным давлением. Через ниппель для подачи свежей дыхательной смеси и впускной клапан мешок вновь заполняется свежим газом. Присоединение к впускному клапану резервного мешка помогает предотвратить подмешивание воздуха помещения. Комбинированный клапан резервного мешка состоит из двух направляю­щих клапанов — входного и выходного. Входной клапан допускает приток внешнего воздуха в ме­шок, если поступления свежей смеси (через нип­пель) недостаточно для его заполнения. При по­ложительном давлении в резервном мешке открывается выходной клапан, через который сбрасывается избыток газов при чрезмерном по­токе свежей смеси.

Реанимационные дыхательные мешки имеют некоторые недостатки. Во-первых, для обеспече­ния высокой фракционной концентрации кисло­рода во вдыхаемой смеси требуются весьма высо­кие скорости потока свежего газа. FiO2 прямо пропорциональна скорости потока и концентрации кислорода в газовой смеси (обычно 100 %), посту­пающей в дыхательный мешок, и обратно пропор­циональна минутному объему дыхания. Например, при использовании реанимационного дыхательно­го мешка Лаердала (с резервным мешком) для обеспечения 100 % концентрации кислорода во вдыхаемой смеси при дыхательном объеме 750 мл и частоте дыхания 12 в 1 мин требуется поток кис­лорода 10 л/мин. Максимально возможный дыхательный объем больше, если используются мешки объемом 3 л. В действительности же с помощью большинства реанимационных мешков можно обеспечивать дыхательный объем не более 1000 мл. Наконец, хотя нормально функционирующий не­реверсивный дыхательный клапан имеет низкое сопротивление вдоху и выдоху, содержащаяся в выдыхаемой смеси влага может вызывать его "за-липание".

Случай из практики: поверхностная анестезия неясного происхождения

Девочка, 5 лет, без сопутствующей патологии, по­мимо значительного ожирения, поступила для грыжесечения по поводу паховой грыжи. После стандартной индукции анестезии и интубации тра­хеи больная переведена на ИВЛ с дыхательным объемом 7 мл/кг и частотой 16 в 1 мин. Несмотря на ингаляцию 2 % галотана в 50 % закиси азота, возникла тахикардия (145 уд/мин) и умеренная артериальная гипертензия (140/90 мм рт. ст.). С целью углубления анестезии введен фентанил (3 мкг/кг). Несмотря на это, тахикардия и артери­альная гипертензия продолжали нарастать, присо­единились частые желудочковые экстрасистолы.

О чем следует подумать при дифференциальной диагностике гемодинамических нарушений у этой больной?

При сочетании тахикардии и артериальной гипер-тензии во время общей анестезии анестезиологу всегда следует исключить гиперкапнию и гипо­ксию, которые вызывают симптомы повышенной симпатической активности. Эти опасные для жиз­ни осложнения можно быстро выявить с помощью мониторинга концентрации CO2 в конце выдоха, пульсоксиметрии или при анализе газов артери­альной крови. Частой причиной интраоперационной тахикар­дии и артериальной гипертензии является поверх­ностная анестезия. Обычно это сопровождается движениями больного. При использовании миоре­лаксантов, однако, о поверхностной анестезии с достоверностью судить нельзя. Отсутствие реак­ции на дополнительную дозу опиоидов должно за­ставить анестезиолога предположить другие, воз­можно более серьезные причины осложнения.

Злокачественная гипертермия — редкая, но возможная причина необъяснимой тахикардии, особенно если ей предшествует контрактура (см. "Случай из практики" в гл. 44). Некоторые ле­карственные средства, используемые в анестезио­логии (например, панкуроний, кетамин, эфедрин), стимулируют симпатическую нервную систему и могут вызывать или усиливать тахикардию и ги-пертензию. Гипогликемия у больных сахарным ди­абетом, обусловленная применением инсулина или пролонгированных пероральных сахаросни-жающих препаратов, также может вызвать подоб­ные гемодинамические расстройства. Следует принять во внимание и другие эндокринные забо­левания (например, феохромоцитому, тиреотокси-ческий зоб, карциноид).

Могут ли технические неисправности быть причиной этих осложнений?

В некоторых старых моделях наркозных аппаратов для включения испарителя необходимо повернуть не только его рукоятку, но и основной конт­рольный переключатель. Особенно часто это встречается в медных испарителях. Кратковремен­ное быстрое "принюхивание" к вдыхаемой смеси — легкий, хотя и не эстетичный для анестезиолога способ убедиться, что наркозный аппарат подает

А. Проверка исправности клапана вдоха

ингаляционный анестетик. Для обнаружения при­сутствия закиси азота необходимо сложное обору­дование, но точную, хотя и косвенную, информа- цию может предоставить анализатор кислорода.

Причиной гипоксии и гиперкапнии может быть неправильное соединение элементов дыхательного контура. Кроме того, нарушение работы направляю­щих клапанов вызывает увеличение "мертвого про­странства" и рециркуляцию углекислого газа. Исто­щение сорбента, направление дыхательной смеси в обход адсорбера при включенном обходном клапа­не ведут к увеличению рециркуляции при низкой скорости потока свежей смеси. Рециркуляцию CO2 можно обнаружить капнографией или масс-спект-рометрией на фазе вдоха (см. гл. 6). Если выявлены неполадки в работе оборудования, то до их устране­ния больного отсоединяют от наркозного аппарата и переводят на ручную вентиляцию мешком Амбу.

Как проверить направляющие клапаны перед использованием наркозного аппарата?

Частота несостоятельности направляющих кла­панов — приблизительно 15 %. Существует быст­рая процедура их проверки:

Б. Проверка исправности клапана выдоха



Рис. 3-11. Схема соединения дыхательного мешка и гофрированного шланга при проверке исправности клапанов вдо­ха (А) и выдоха (Б). Стрелки означают направление потока газа через клапаны. (Из: Kim J., Kovac A. L, Mayhewson H. S. A method for detection of incompetent unidirectional dome valves: A prevalent malfunction. Anesth. Analg., 1985. 64: 745. Воспроизведено с разрешения Anesthesia Research Society.)

1. Дыхательные шланги отсоединяют от наркоз­ного аппарата, закрывают предохранитель­ный клапан и отключают подачу всех газов.

2. Для проверки клапана вдоха один конец сек­ции дыхательного шланга соединяют с пат­рубком вдоха и закрывают патрубок выдоха. Если дыхательный мешок, находящийся на своем обычном месте, расправляется при вду­вании воздуха в дыхательный шланг, то кла­пан вдоха несостоятелен (рис. 3-11 A).

3. Для проверки клапана выдоха один конец секции дыхательного шланга соединяют со стандартным местом подсоединения дыха­тельного мешка и закрывают патрубок вдоха. Если дыхательный мешок, подсоединенный к патрубку выдоха, расправляется при вдува­нии воздуха в дыхательный шланг, то клапан выдоха неисправен (рис. 3-11 Б).

Каковы последствия гиперкапнии?

Гиперкапния дает разнообразные эффекты, боль­шинство из которых при общей анестезии маски­руется. Мозговой кровоток увеличивается прямо пропорционально PaCO2, что опасно при внутри­черепной гипертензии (например, при опухолях головного мозга). Чрезмерно высокое PaCO2 (> 80 мм рт. ст.) может быть причиной потери со­знания в связи с резким снижением рН церебро­спинальной жидкости. CO2 вызывает депрессию миокарда, но это прямое воздействие обычно ком­пенсируется активацией симпатической нервной системы. Во время общей анестезии гиперкапния обычно вызывает увеличение сердечного выброса, повышение артериального давления и нарушения ритма.

Повышение концентрации CO2 в плазме исто­щает емкость буферных систем крови и приводит к ацидозу. Ацидоз в свою очередь вызывает пере­мещение ионов Ca2+ и K+ из клеток во внеклеточ­ное пространство. Ацидоз приводит к смещению кривой диссоциации оксигемоглобина вправо.

Углекислый газ является мощным стимулято­ром дыхания. Так, если человек находится в созна­нии, то при повышении PaCO2 на каждый 1 мм рт. ст. выше нормы минутная вентиляция возрастает на 2-3 л/мин. Общая анестезия в значительной сте­пени подавляет эту реакцию. В заключение следу­ет отметить, что тяжелая гиперкапния может выз­вать гипоксию путем удаления кислорода из альвеол в связи с тем, что организм стремится из­бавиться от избытка CO2.

Избранная литература

Conway C. M. Anaesthetic breathing systems. In: Scientific Foundations of Anaesthesia, 4th ed. Scurr C., Feldman S. (eds). Heinemann, 1990. Британская схема классификации дыхатель­ных контуров.

Dorsch J. A., Dorsch S. E. Understanding Anesthesia Equipment, 3rd ed. Williams & Wilkins, 1993. Дыхательные контуры детально рассмотрены в гл. 5-8.

Petty C. The Anesthesia Machine. Churchill Living-stone, 1987. Содержит краткое описание дыха­тельных контуров.
1   2   3   4   5   6   7   8   9   ...   57
написать администратору сайта