Главная страница
Медицина
Финансы
Экономика
Биология
Сельское хозяйство
Ветеринария
Право
Юриспруденция
Языкознание
Языки
Логика
Религия
Философия
Этика
Социология
Политология
Физика
История
Информатика
Энергетика
Промышленность
Искусство
Культура
Математика
Вычислительная техника
Химия
Связь
Электротехника
Автоматика
Экология
Геология
Механика
Начальные классы
Строительство
Доп
образование
Воспитательная работа
Русский язык и литература
Другое
Классному руководителю
Дошкольное образование
Казахский язык и лит
Физкультура
Школьному психологу
Технология
География
Директору, завучу
Иностранные языки
Астрономия
Музыка
Обществознание
Логопедия
ОБЖ
Социальному педагогу

И.Пригожин, И.Стенгерс. Порядок из хаоса. Новый диалог человека с природой. И.Пригожин, И.Стенгерс. Порядок из хаоса. Новый диалог человека. Ilya Prigogine, Isabelle Stengers order out of chaos man's new dialogue with nature


Скачать 2.09 Mb.
НазваниеIlya Prigogine, Isabelle Stengers order out of chaos man's new dialogue with nature
АнкорИ.Пригожин, И.Стенгерс. Порядок из хаоса. Новый диалог человека с природой.doc
Дата28.01.2017
Размер2.09 Mb.
Формат файлаdoc
Имя файлаИ.Пригожин, И.Стенгерс. Порядок из хаоса. Новый диалог человека .doc
ТипКнига
#463
КатегорияБиология. Ветеринария. Сельское хозяйство
страница14 из 32
1   ...   10   11   12   13   14   15   16   17   ...   32

Глава 5. ТРИ ЭТАПА В РАЗВИТИИ ТЕРМОДИНАМИКИ

1. Поток и сила


Вернемся еще раз1 к изложению второго начала тер­модинамики, приведенному в предыдущей главе. Цент­ральную роль в описании эволюции играет понятие эн­тропии. Как мы уже знаем, приращение энтропии допус­кает разложение в сумму двух членов: члена deS, свя­занного с обменом между системой и остальным миром, и члена diS, описывающего производство энтропии вслед­ствие необратимых процессов внутри системы. Второй член всегда положителен, за исключением термодинами­ческого равновесия, когда он обращается в нуль. Для изолированной системы (deS=0) состояние равновесия соответствует состоянию с максимумом энтропии.

Для того чтобы по достоинству оценить значение вто­рого начала для физики, нам понадобится более подроб­ное описание различных необратимых явлений, участ­вующих в производстве энтропии diS или в производстве энтропии за единицу времени diS/dt.

Особый интерес для нас представляют химические реакции. Вместе с теплопроводностью они являются про­тотипами необратимых процессов. Помимо того что они важны сами по себе, химические процессы играют пер­востепенную роль в биологии. В живых клетках идет не прекращающаяся ни на миг метаболическая деятель­ность. Тысячи химических реакций происходят одновре­менно для того, чтобы клетка могла получить необходи­мые питательные вещества, синтезировать специфиче­ские биомолекулы и удалить ненужные отходы. Скоро­сти различных реакций так же, как и те места внутри клетки, где они протекают, вся химическая активность клетки строго координированы. Таким образом, биоло-

184

гическая структура сочетает в себе порядок и актив­ность. В отличие от живых структур состояние равнове­сия остается инертным, даже если оно наделено струк­турой, как, например, в случае кристалла. Могут ли хи­мические процессы дать нам ключ к постижению разли­чия между поведением кристалла и клетки?

Прежде чем ответить на этот вопрос, нам придется рассмотреть химические реакции с двоякой точки зре­ния: и с кинетической, и с термодинамической.

С точки зрения кинетики важнейшей величиной явля­ется скорость реакции. Классическая теория химической кинетики исходит из допущения, согласно которому ско­рость химической реакции пропорциональна концентра­циям веществ, участвующих в реакции. Действительно, реакция происходит в результате столкновений между молекулами, поэтому совершенно естественно предполо­жить, что число столкновений пропорционально произве­дению концентраций реагирующих молекул.

Рассмотрим в качестве примера следующую простую реакцию: A+XB+Y. Такая запись («уравнение реак­ции») означает, что всякий раз, когда молекула реаген­та А сталкивается с молекулой реагента X (A и Х — ис­ходные вещества), с определенной вероятностью проис­ходит реакция, в результате которой образуется одна мо­лекула вещества В и одна молекула вещества Y (В и Y — продукты реакции). Столкновение, при котором мо­лекулы подвергаются столь сильной перестройке, назы­вается эффективным. Обычно эффективные столкновения составляют лишь очень малую долю (например, 1/106) от общего числа столкновений. В большинстве случаев молекулы при столкновениях сохраняют свое тождество и лишь обмениваются энергией.

Химическая кинетика занимается изучением измене­ний концентрации различных веществ, участвующих в реакции. Эти изменения кинетика описывает с помощью дифференциальных уравнений — так же, как механика описывает движение ньютоновскими уравнениями. Но в химической кинетике мы вычисляем не ускорения, а ско­рости изменения концентраций, и эти скорости представимы в виде некоторых функций от концентраций реа­гентов. Например, скорость изменения концентрации X*,

* Авторы обозначают концентрации веществ теми же буквами, что и сами вещества. — Прим. перев.

185

Т. е. производная dX/dt, пропорциональна произведению концентраций A и X в реакционной смеси, т. е. dX/dt= =—kAX, где k — коэффициент пропорциональности, за­висящий от таких величин, как температура и давление, и служащий мерой доли эффективных столкновений, при­водящих к реакции A+ХВ+Y. Поскольку в нашем примере всякий раз, когда исчезает одна молекула ве­щества X, исчезает также одна молекула вещества А и образуется по одной молекуле веществ В и Y, скорости изменения концентраций реагентов связаны соотноше­ниями: dX/dt = dA/dt = —dY/dt = —dB/dt.

Но если столкновение молекул Х и А может «запус­тить» химическую реакцию, то столкновение молекул В и Y может привести к обратной реакции. Это означает, что внутри описываемой химической системы может происходить вторая реакция: Y+BX+A, которая при­водит к дополнительному изменению концентрации X: dX/dt=k'YB. Полное изменение концентрации реагента определяется балансом между прямой и обратной реак­циями. В нашем примере dX/dt=(—dY/dt=...)=—kAX+ +k'YB.

Будучи предоставленной самой себе, система, в кото­рой происходят химические реакции, стремится к состоя­нию химического равновесия. Именно поэтому химиче­ское равновесие можно считать типичным примером со­стояния-аттрактора. Каков бы ни был ее начальный со­став, система самопроизвольно достигает этой конечной стадии, в которой прямые и обратные реакции статисти­чески компенсируют друг друга, и поэтому дальнейшее суммарное изменение концентрации любого реагента прекращается (dX/dt=0). В нашем примере из полной компенсации прямой и обратной реакций следует, что равновесные концентрации удовлетворяют соотношению AX/YB=k'/k=K. Оно известно под названием «закона действия масс», или закона Гульдберга—Вааге (К — константа равновесия). Определяемое законом действия масс соотношение концентраций соответствует химиче­скому равновесию так же, как равномерность темпера­туры (в случае изолированной системы) соответствует тепловому равновесию. Соответствующее производство энтропии равно нулю.

Прежде чем перейти к термодинамическому описанию химических реакций, рассмотрим кратко один дополни­тельный аспект кинетического описания. Скорость хими-

186

ческой реакции зависит не только от концентраций ре­агирующих молекул и термодинамических параметров (например, от давления и температуры). Сказывается на ней и присутствие в системе химических веществ, влияющих на реакцию, но остающихся в итоге неизмен­ными. Такого рода вещества называются катализатора­ми. Катализаторы могут, например, изменить значения констант реакций k или k' и даже заставить систему пойти по другому пути реакции. В биологии роль катализа­торов играют специфические протеины — ферменты. Эти макромолекулы обладают пространственной конфигура­цией, позволяющей им изменять скорость реакции. Фер­менты часто бывают высокоспецифичными и влияют лишь на одну реакцию. Возможный механизм каталити­ческого действия ферментов состоит в следующем. В мо­лекуле ферментов имеются места, обладающие повышен­ной «реакционной способностью». Молекулы других ве­ществ, участвующих в реакции, стремятся присоединить­ся к активным участкам молекулы фермента. Тем самым повышается вероятность их столкновения, а следователь­но, и инициации химической реакции.

Весьма важным типом каталитических процессов (особенно в биологии) являются так называемые автока­талитические реакции, в которых для синтеза некоторо­го вещества требуется присутствие этого же вещества. Иначе говоря, чтобы получить в результате реакции ве­щество X, мы должны начать с системы, содержащей Х с самого начала. Например, очень часто молекула Х ак­тивирует фермент: присоединяясь к молекуле фермента, Х стабилизирует такую конфигурацию, которая делает легкодоступными активные участки. Автокаталитическим процессам соответствуют схемы реакций типа А+2Х->3Х (в присутствии молекул Х одна молекула А пре­вращается в одну молекулу X). Иначе говоря, нам необходимо иметь X, чтобы произвести еще X. Графически автокаталитическне реакции принято изображать с по­мощью реакционной петли:



Важная особенность систем с такими реакционными петлями состоит в том, что кинетические уравнения, ко-

187

Рис. 3. На этом графике представлены пути реакций для «брюсселятора» (более подробно «брюсселятор» описан в тексте).

торые описывают происходящие в них изменения, явля­ются нелинейными дифференциальными уравнениями.

Если мы применим тот же метод, то для реакции A+2XЗX получим кинетическое уравнение dX/dt=КАХ2, т. е. скорость изменения концентрации вещест­ва Х окажется пропорциональной квадрату его концен­трации.

Другой весьма важный класс каталитических реак­ций в биологии — так называемый кросс-катализ — пред­ставлен для системы 2X+Y3X,  B+XY+D на рис. 3.

В данном случае мы действительно имеем дело с кросс-катализом (т. е. «перекрестным катализом»), по­скольку из Y получается X, а из Х одновременно полу­чается Y. Катализ не обязательно увеличивает скорость реакции. Он может и замедлять, или ингибировать, ее. Графически это также изображается с помощью соот­ветствующих петель обратной связи.

Характерные математические особенности нелиней­ных дифференциальных уравнений, описывающих хими­ческие реакции с каталитическими стадиями, как мы убе­димся в дальнейшем, имеют жизненно важное значение для термодинамики сильно неравновесных химических процессов. Кроме того, как мы уже упоминали, биолога­ми установлено, что петли обратной связи играют весь­ма существенную роль в метаболических функциях. На­пример, взаимосвязь между нуклеиновыми кислотами и протеинами может быть описана как кросс-катализ: нуклеиновые кислоты являются носителями информа­ции, необходимой для синтеза протеинов, а протеины в свою очередь синтезируют нуклеиновые кислоты.

Помимо скоростей химических реакций, необходимо также учитывать скорости других необратимых процес-

188

сов, таких, как перенос тепла и диффузия вещества. Ско­рости необратимых процессов называются также пото­ками и обозначаются буквой J. Общей теории, которая давала бы скорости, или потоки, не существует. В хи­мических реакциях скорость зависит от молекулярного механизма, в чем нетрудно убедиться на уже приведен­ных примерах. Термодинамика необратимых процессов вводит величины еще одного типа: помимо скоростей или потоков J, она использует обобщенные силы X, т. е. «причины», вызывающие потоки. Простейшим примером может служить теплопроводность. Закон Фурье утверж­дает, что поток тепла J пропорционален градиенту тем­пературы. Следовательно, градиент температуры есть та «сила», которая создает поток тепла. По определению, и поток и силы в состоянии теплового равновесия равны нулю. Как мы увидим в дальнейшем, производство эн­тропии P=diS/dt может быть вычислено по потоку и силам.

Рассмотрим определение обобщенной силы в случае химической реакции. Для простоты обратимся снова к реакции A+XY+B. Как мы уже знаем, в случае рав­новесия соотношение концентраций определяется зако­ном действия масс. Теофил де Донде показал, что в ка­честве «химической силы» можно ввести сродство A, определяющее направление протекания химической ре­акции так же, как градиент температуры определяет на­правление теплового потока. В рассматриваемом нами случае сродство пропорционально lnKBY/AX, где К — константа равновесия. Непосредственно видно, что срод­ство A обращается в нуль при достижении равновесия, где по закону действия масс AX/BY=K. Если мы станем выводить систему из равновесия, то сродство (по абсо­лютной величине) возрастет. В этом нетрудно убедить­ся, если исключить из системы некоторую долю моле­кул В по мере их образования в ходе реакции. Можно сказать, что сродство служит мерой расстояния между фактическим состоянием системы и ее равновесным со­стоянием. Кроме того, как мы упоминали, знак сродст­ва определяет направление химической реакции. Если сродство A положительно, то молекул В и Y «слишком много» и суммарная реакция идет в направлении B+YA+X. И, наоборот, если сродство A отрицательно, то молекул В и Y «слишком мало» и суммарная реак­ция идет в обратном направлении.

189

Сродство в том смысле, в каком мы его определили, является уточненным вариантом старинного сродства, о которой писали еще алхимики, стремившиеся разо­браться в способности химических веществ вступать в одни и не вступать в другие реакции, т. е. в «симпати­ях» и «антипатиях» молекул. Идея о том, что химическая активность не сводима к механическим траекториям, к невозмутимому господству динамических законов, под­черкивалась с самого начала. Мы уже приводили обшир­ную выдержку из Дидро. Позднее Ницше по другому поводу заметил, что смешно говорить о «химических за­конах», как будто химические вещества подчиняются за­конам, аналогичным законам морали. В химии, утверж­дал Ницше, не существует ограничений и каждое ве­щество вольно поступать как ему «вздумается». Речь идет не об «уважении», питаемом одним веществом к другому, а о силовой борьбе, о непрестанном подчинении слабого сильному2. Химическое равновесие с обращаю­щимся в нуль сродством соответствует разрешению это­го конфликта. С этой точки зрения специфичность тер­модинамического сродства перефразирует на современ­ном языке старую проблему3 — проблему различия между скованным жесткими нормами безразличным миром динамических законов и миром спонтанной про­дуктивной активности, которому принадлежат химиче­ские реакции.

Нельзя не отметить принципиальное концептуальное различие между физикой и химией. В классической фи­зике мы можем по крайней мере представлять себе об­ратимые процессы, такие, как движение маятника без трения. Пренебрежение необратимыми процессами в ди­намике всегда соответствует идеализации, но по край­ней мере в некоторых случаях эта идеализация разумна. В химии все обстоит совершенно иначе. Процессы, изу­чением которых она занимается (химические превраще­ния, характеризуемые скоростями реакций), необрати­мы. По этой причине химию невозможно свести к лежа­щей в основе классической или квантовой механики идеализации, в которой прошлое и будущее играют эк­вивалентные роли.

Как и следовало ожидать, все необратимые процес­сы сопровождаются производством энтропии. Каждый из них входит в diS в виде произведения скорости, или по­тока J и соответствующей силы X. Полное производство

190

энтропии в единицу времени P=diS/dt равно сумме всех таких вкладов, каждый из которых имеет вид произве­дения JX.

Термодинамику можно разделить на три большие области, изучение которых соответствует трем последо­вательным этапам в развитии термодинамики. В равно­весной области производство энтропии, потоки и силы равны нулю. В слабо неравновесной области, где термо­динамические силы «слабы», потоки Jk линейно зависят от сил. Наконец, третья область называется сильно не­равновесной, или нелинейной, потому, что в ней потоки являются, вообще говоря, более сложными функциями сил. Охарактеризуем сначала некоторые общие особен­ности линейной термодинамики, характерные для слабо неравновесных систем.
1   ...   10   11   12   13   14   15   16   17   ...   32
написать администратору сайта