Главная страница

Философия (от греч phileo люблю, sophia мудрость) любовь к мудрости


Скачать 234.28 Kb.
НазваниеФилософия (от греч phileo люблю, sophia мудрость) любовь к мудрости
Дата12.03.2018
Размер234.28 Kb.
Формат файлаdocx
Имя файлаFILOSOFIYa_1.docx
ТипДокументы
#38250
страница3 из 7

Подборка по базе: эссе философия большаков.doc, Реферат философия.docx, Байтасова Эссе философия.docx, термины философия .docx, Схемы философия.pdf, готова философия права.docx, Таблица Философия.docx, Реферат философия.docx, Реферат философия 20.04.docx, Реферат философия 20.04.docx.
1   2   3   4   5   6   7
http://bits.wikimedia.org/static-1.23wmf7/skins/common/images/magnify-clip.png

Зенон Элейский, книжная гравюра XVII века

Апори́и Зено́на (от др.-греч. ἀπορία, трудность) — внешне парадоксальные рассуждения на тему о движении и множестве, автором которых является древнегреческий философ Зенон Элейский (V век до н. э.). Современники упоминали более 40 апорий Зенона, до нас дошли 9, обсуждаемые в «Физике» и в других трудах Аристотеля, в комментариях Симпликия, Филопона и Фемистия к Аристотелю[1]; одна апория из этих 9 приводится также у Диогена Лаэртского[2], апории о множестве обсуждаются в диалоге Платона «Парменид». Комментатор Элиас (Элий, VI век) сообщает, что Зенон высказал 40 рассуждений (эпихейрем) о множестве и пять — о движении[3]:

    Он составил для своего учителя Парменида, который утверждал, что сущее одно по виду, но множественно согласно очевидности, {аргументацию} из сорока эпихейрем в пользу того, что сущее одно, так как считал, что быть союзником учителя — это хорошо. Еще как-то, защищая того же учителя, утверждавшего, что сущее неподвижно, он выдвинул пять эпихейрем в пользу того, что сущее неподвижно.Антисфен-киник, который не смог на них возразить, встал и стал ходить, полагая, что доказательство делом сильнее всякого возражения словом.




Наиболее известны парадокс «Ахиллес и черепаха» и другие апории Зенона о движении, которые обсуждаются более двух тысячелетий, им посвящены сотни исследований. Платон в «Пармениде» их не упоминает, поэтому В. Я. Комарова предполагает, что парадоксы движения были написаны Зеноном позднее других[4]. Ошибочно воспринимать эти рассуждения как софизмы или полагать, что с появлением высшей математики все апории разрешены[5].Бертран Рассел писал, что апории Зенона «в той или иной форме затрагивают основания почти всех теорий пространства, времени и бесконечности, предлагавшихся с его времени до наших дней»[6]. Научные дискуссии, вызванные рассуждениями Зенона, существенно углубили понимание таких фундаментальных понятий, как роль непрерывного и дискретного (прерывного) в природе, адекватность физического движения и его математической модели и др. Эти дискуссии продолжаются и в настоящее время (см. список литературы), прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось[7].

 | править исходный текст]

http://bits.wikimedia.org/static-1.23wmf7/skins/common/images/magnify-clip.png

Зенон показывает ученикам двери к Истине и Лжи.
Фреска в библиотеке Эскориала.
Автор: Б. Кардуччи или П. Тибальди (англ.)русск..

Элейская философская школа (элеаты) существовала в конце VI — первой половине V века до н. э., родоначальниками её считаются Ксенофан и Парменид, учитель Зенона. Школа разработала своеобразное учение о бытии. Элеаты отстаивали единство бытия, считая, что представление о множественности вещей во Вселенной есть искусственное разделение[8]. Бытие элеатов полно, реально и познаваемо, однако вместе с тем оно нераздельно, неизменно и вечно, у него нет ни прошлого, ни будущего, ни рождения, ни смерти. Познание этого целостного мира возможно только путём разумных рассуждений, а чувственная картина мира, включая наблюдаемые движения, обманчива и противоречива[9]. При этом геометрический (и вообще математический) метод познания, характерный дляпифагорейцев, элеаты также считали уступкой чувственной очевидности, предпочитая чисто логический подход. С этих же позиций они впервые в науке поставили вопрос о допустимости научных понятий, связанных с бесконечностью[10].

Как отмечают В. Ф. Асмус и ряд других историков, элеаты отрицали не сами, видимые нами, движение и множественность мира, а их мыслимость[11][12], то есть, на современном языке, соответствие бытия и его научных моделей, которые, по мнению элеатов, невозможны без противоречий — в то время как рационально-логический подход позволяет этих противоречий избежать. Отстаивая свою идеологию в философских спорах, Зенон и другие элеаты использовали изощрённую логическую аргументацию, и важной её частью были апории Зенона, доказывающие нелогичность и противоречивость взглядов оппонентов.

Апории о движении[править | править исходный текст]

Это наиболее известные (и, судя по библиографии, наиболее актуальные) парадоксы Зенона.

Модели движения в античной натурфилософии[править | править исходный текст]

В V веке до н. э. древнегреческая математика достигла высокой ступени развития, и пифагорейская школа выражала уверенность, что математические закономерности лежат в основе всех законов природы. В частности, математическая модель движения в природе была создана на основе геометрии, которая к этому времени уже была достаточно глубоко разработана. Геометрия пифагорейцев опиралась на ряд идеализированных понятий: тело, поверхность, фигура, линия — и самым идеализированным было фундаментальное понятие точкипространства, не имеющей никаких собственных измеримых характеристик[13]. Тем самым любая классическая кривая считалась одновременно и непрерывной, и состоящей из бесконечного количества отдельных точек. В математике это противоречие не вызывало проблем, но применение этой схемы к реальному движению поставило вопрос, насколько правомерен такой внутренне противоречивый подход[14]. Первым проблему ясно сформулировал Зенон Элейский в серии своих парадоксов (апорий).

Апории и вообще взгляды Зенона нам известны только в кратком пересказе других античных философов, которые жили столетия спустя и хотя высоко ценили Зенона как «основателя диалектики», но чаще всего были его идейными противниками. Поэтому трудно достоверно выяснить, как формулировал апории сам Зенон, что он хотел показать или опровергнуть[15]. По мнению большинства комментаторов, их цель — показать, что наше (математическое) представление о движении противоречиво[7][5]. Эта точка зрения подтверждается тем, что элеатов в древности называли афизиками, то есть противниками науки о природе[15].

В двух апориях (Ахиллес и Дихотомия) предполагается, что время и пространство непрерывны и неограниченно делимы; Зенон показывает, что это допущение приводит к логическим трудностям. Третья апория («Стрела»), напротив, рассматривает время как дискретное, составленное из точек-моментов; в этом случае, как показал Зенон, возникают другие трудности[12]. Отметим, что неправильно утверждать, будто Зенон считал движение несуществующим, потому что, согласно элейской философии, доказать несуществование чего бы то ни было невозможно: «несуществующее немыслимо и невыразимо»[16]. Цель аргументации Зенона была более узкой: выявить противоречия в позиции оппонента.

Часто в число апорий движения включают «Стадион» (см. ниже), но по тематике этот парадокс скорее относятся к апориям бесконечности. Далее содержание апорий пересказывается с использованием современной терминологии.

Под влиянием возникших философских споров сформировались два взгляда на строение материи и пространства: первый утверждал их бесконечную делимость, а второй — существование неделимых частиц, «атомов». Каждая из этих школ решала поставленные элеатами проблемы по-своему.

Содержание апорий о движении[править | править исходный текст]

Ахиллес и черепаха[править | править исходный текст]

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Здесь и в следующей апории предполагается, что пространство и время не имеют предела делимости. Диоген Лаэртский считал автором этой знаменитой апории Парменида, учителя Зенона[12]. Черепаха как персонаж впервые упоминается у комментатора Симпликия; в тексте парадокса, приведённом у Аристотеля, быстроногий Ахиллес догоняет другого бегуна.

Дихотомия[править | править исходный текст]

Чтобы преодолеть путь, нужно сначала преодолеть половину пути, а чтобы преодолеть половину пути, нужно сначала преодолеть половину половины, и так до бесконечности. Поэтому движение никогда не начнётся.

Название «Дихотомия» (по-гречески: деление пополам) дано Аристотелем.

Летящая стрела[править | править исходный текст]

http://upload.wikimedia.org/wikipedia/commons/thumb/2/24/arrow_%28psf%29.png/220px-arrow_%28psf%29.png

http://bits.wikimedia.org/static-1.23wmf7/skins/common/images/magnify-clip.png

Стрела

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.


Апории «Дихотомия» и «Стрела» напоминают следующие парадоксальные афоризмы, приписываемые ведущему представителю древнекитайской «школы имён» (мин цзя) Гунсунь Луну (середина IV века до н. э. — середина III века до н. э.):

«В стремительном [полёте] стрелы есть момент отсутствия и движения, и остановки».

«Если от палки [длиной] в один чи ежедневно отнимать половину, это не завершится и через 10000 поколений».

Критика апорий Аристотелем[править | править исходный текст]

http://bits.wikimedia.org/static-1.23wmf7/skins/common/images/magnify-clip.png

Лисипп. Бюст Аристотеля (римская копия).

Аристотель (IV век до н. э.) считал материю непрерывной и неограниченно делимой. В книгах IV (главы 2, 3), VI (главы 2, 9) и VIII (глава 8) своей «Физики» он анализирует и отвергает рассуждения Зенона[17]. В отношении апорий движения Аристотель подчёркивает, что хотя интервал времени можно неограниченно делить, но его нельзя составить из изолированных точек-моментов и нельзя этой бесконечной делимости соотносить бесконечное время:

Зенон же рассуждает неправильно. Если всегда — говорит он — всякое [тело] покоится, когда оно находится в равном [себе месте], а перемещающееся [тело] в момент «теперь» всегда [находится в равном себе месте], то летящая стрела неподвижна. Но это неверно, потому что время не слагается из неделимых «теперь», а также никакая другая величина.
Есть четыре рассуждения Зенона о движении, доставляющие большие затруднения тем, кто пытается их разрешить. Первое — о несуществовании движения на том основании, что перемещающееся [тело] должно дойти до половины прежде, чем до конца.<…> Второе — так называемый «Ахиллес»: оно состоит в том, что самое медленное [существо] никогда не сможет быть настигнуто в беге самым быстрым, ибо преследующему необходимо прежде прийти в место, откуда уже двинулось убегающее, так что более медленное всегда должно будет на какое-то [расстояние] опережать [преследующего]. И это рассуждение основывается на делении пополам, отличается же [от предыдущего] тем, что взятая величина делится не на две равные части.<…>
Третье, о котором только что было упомянуто, состоит в том, что летящая стрела стоит неподвижно; оно вытекает из предположения, что время слагается из [отдельных] «теперь»; если это не признавать, силлогизма не получится.

Диоген сообщает, что у Аристотеля и Гераклида Понтийского были сочинения под названием «Против учения Зенона», однако они не сохранились.

Мнения историков и комментаторов по поводу аргументов Аристотеля разделились: одни считали их достаточными, другие критиковали за неубедительность и недостаточную глубину. В частности, Аристотель не дал объяснения, как конечный отрезок времени может состоять из бесконечного числа частей[12]. В. Я. Комарова пишет[18]:

Позиция Аристотеля ясна, но не безупречна — и прежде всего потому, что ему самому не удалось ни обнаружить логические ошибки в доказательствах, ни дать удовлетворительное объяснение парадоксам… Аристотелю не удалось опровергнуть аргументы по той простой причине, что в логическом отношении доказательства Зенона составлены безукоризненно.

Атомистический подход[править | править исходный текст]

http://bits.wikimedia.org/static-1.23wmf7/skins/common/images/magnify-clip.png

Эпикур Самосский

Первый древнегреческий атомист, Левкипп, был учеником Зенона и одним из учителей другого крупного атомиста, Демокрита. Наиболее детальное изложение античного атомизма — система Эпикура, IV—III века до н. э. — дошло до нас в изложении Лукреция Кара. В отличие от Аристотеля, Эпикур считал мир дискретным, состоящим из вечно движущихся неделимых атомов и пустоты. Особый интерес представляет эпикуровская концепция изотахии, согласно которой все атомы движутся с одинаковой скоростью[19]. Учитывая, что в мире Эпикура нельзя измерить нечто меньшее, чем атом, отсюда следует, что существует и наименьший измеримый интервал времени. Математическая идеализация этой модели представляла любое тело, фигуру или линию как объединение бесконечного числа бесконечно малых неделимых (этот подход как «метод неделимых» получил особенное развитие в XVI—XVII вв.).

Как следствие, наблюдаемое движение из непрерывного становится скачкообразным. Александр Афродисийский, комментатор Аристотеля, так изложил взгляды сторонников Эпикура: «Утверждая, что и пространство, и движение, и время состоят из неделимых частиц, они утверждают также, что движущееся тело движется на всем протяжении пространства, состоящего из неделимых частей, а на каждой из входящих в него неделимых частей движения нет, а есть только результат движения»[20]. Подобный подход сразу обесценивает парадоксы Зенона, так как убирает оттуда все бесконечности.

Обсуждение в Новое время[править | править исходный текст]

Полемика вокруг зеноновских апорий продолжилась и в Новое время. До XVII века интерес к апориям не отмечается, и их аристотелевская оценка являлась общепринятой. Первое серьёзное исследование предпринял французский мыслительПьер Бейль, автор известного «Исторического и критического словаря» (1696). В статье о Зеноне Бейль подверг критике позицию Аристотеля и пришёл к выводу, что Зенон прав: понятия времени, протяжённости и движения связаны с трудностями, непреодолимыми для человеческого ума[21].

Сходные с апориями темы затронуты в антиномиях Канта. Гегель в своей «Истории философии» подчеркнул, что Зенонова диалектика материи «не опровергнута до сегодняшнего дня» (ist bis auf heutigen Tag unwiderlegt)[2]. Гегель оценил Зенона как «отца диалектики» не только в античном, но и в гегелевском смысле слова диалектика. Он отметил, что Зенон различает чувственно воспринимаемое и мыслимое движение. Последнее, в соответствии со своей философией, Гегель описал как сочетание и конфликт противоположностей, как диалектику понятий[22]. Гегель не даёт ответа на вопрос, насколько этот анализ приложим к реальному движению, ограничившись выводом: «Зенон осознал определения, содержащиеся в наших представлениях о пространстве и времени, и обнаружил заключающиеся в них противоречия»[23]

Во второй половине XIX века анализом парадоксов Зенона занимались многие учёные, высказывавшие самые разные точки зрения. Среди них[2]:

немецкий философ Эдуард Целлер;

французский историк науки Поль Таннери, рассматривавший парадоксы Зенона как аргумент в критике пифагореизма[24];

французский историк Виктор Брошар (франц.), по мнению которого логика Зенона безукоризненна;

и многие другие.

Современная трактовка[править | править исходный текст]

Довольно часто появлялись (и продолжают появляться) попытки математически опровергнуть рассуждения Зенона и тем самым «закрыть тему». Например, построив ряд из уменьшающихся интервалов для апории «Ахиллес и черепаха», можно легко доказать, что он сходится, так что Ахиллес обгонит черепаху. В этих «опровержениях», однако, подменяется суть спора. В апориях Зенона речь идёт не о математической модели, а о реальном движении, и поэтому бессмысленно ограничить анализ парадокса внутриматематическими рассуждениями — ведь Зенон как раз и ставит под сомнение применимость к реальному движению идеализированных математических понятий[12][25]. О проблеме адекватности реального движения и его математической модели см. следующий раздел данной статьи.

Д. Гильберт и П. Бернайс в монографии «Основания математики» (1934) замечают по поводу апории «Ахиллес и черепаха»[26]:

Обычно этот парадокс пытаются обойти рассуждением о том, что сумма бесконечного числа этих временных интервалов всё-таки сходится и, таким образом, даёт конечный промежуток времени. Однако это рассуждение абсолютно не затрагивает один существенно парадоксальный момент, а именно парадокс, заключающийся в том, что некая бесконечная последовательность следующих друг за другом событий, последовательность, завершаемость которой мы не можем себе даже представить (не только физически, но хотя бы в принципе), на самом деле всё-таки должна завершиться.

Серьёзные исследования апорий Зенона рассматривают физическую и математическую модели совместно. Р. Курант и Г. Роббинс полагают, что для разрешения парадоксов необходимо существенно углубить наше понимание физического движения[27]. С течением времени движущееся тело последовательно проходит все точки своей траектории, однако если для любого ненулевого интервала пространства и времени нетрудно указать следующий за ним интервал, то для точки (или момента) невозможно указать следующую за ней точку, и это нарушает последовательность. «Остаётся неизбежное расхождение между интуитивной идеей и точным математическим языком, предназначенным для того, чтобы описывать её основные линии в научных, логических терминах. Парадоксы Зенона ярко обнаруживают это несоответствие.»

Гильберт и Бернайс высказывают мнение, что суть парадоксов состоит в неадекватности непрерывной, бесконечно делимой математической модели, с одной стороны, и физически дискретной материи, с другой[28]: «мы вовсе не обязательно должны верить в то, что математическое пространственно-временное представление движения имеет физическое значение для произвольно малых интервалов пространства и времени». Другими словами, парадоксы возникают из-за некорректного применения к реальности идеализированных понятий «точка пространства» и «момент времени», которые не имеют в реальности никаких аналогов, потому что любой физический объект имеет ненулевые размеры, ненулевую длительность и не может быть делим бесконечно.

Близкую точку зрения можно найти у Анри Бергсона[29]:

Противоречия, на которые указывает школа элеатов, касаются не столько самого движения как такового, сколько того искусственного преобразования движения, которое совершает наш разум.

и у Николя Бурбаки[30]:

Вопрос о бесконечной делимости пространства (бесспорно, поставленный еще ранними пифагорейцами) привёл, как известно, к значительным затруднениям в философии: от Элеатов до Больцано и Кантора математики и философы не в силах были разрешить парадокса — как конечная величина может состоять из бесконечного числа точек, не имеющих размера.

Замечание Бурбаки означает, что необходимо объяснить: каким образом физический процесс за конечное время принимает бесконечно много различных состояний. Одно из возможных объяснений: пространство-время в действительности является дискретным, то есть существуют минимальные порции (кванты) как пространства, так и времени[31]. Если это так, то все парадоксы бесконечности в апориях исчезают. Дискретное пространство-время активно обсуждалось физиками ещё в 1950-е годы — в частности, в связи с проектами единой теории поля[32], — однако существенного продвижения по этому пути добиться не удалось.

С. А. Векшенов считает, что для решения парадоксов необходимо ввести числовую структуру, более соответствующую интуитивно-физическим представлениям, чем канторовский точечный континуум[33]. Пример неконтинуальной теории движения предложил Садэо Сирайси[34].

Морис Клайн в своих комментариях по поводу апорий Зенона пишет: «Важно отчётливо сознавать, что природа и математическое описание природы — не одно и то же, причём различие обусловлено не только тем, что математика представляет собой идеализацию… Природа, возможно, отличается несравненно большей сложностью, или структура её не обладает особой правильностью»[35].

Адекватность аналитической теории движения[править | править исходный текст]

Общая теория движения с переменной скоростью была разработана в конце XVII века Ньютоном и Лейбницем. Математической основой теории служит математический анализ, первоначально опиравшийся на понятие бесконечно малой величины. В дискуссии о том, что собой представляет бесконечно малая, вновь возродились два античных подхода[36][37].

Первый подход, которого придерживался Лейбниц, доминировал весь XVIII век. Аналогично античному атомизму, он рассматривает бесконечно малые как особый вид чисел (больше нуля, но меньше любого обычного положительного числа). Строгое обоснование этого подхода (так называемый нестандартный анализ) разработал Абрахам Робинсон в XX веке. Основой анализа по Робинсону служит расширенная числовая система (гипервещественные числа). Конечно, робинсоновские бесконечно малые мало похожи на античные атомы хотя бы потому, что они неограниченно делимы, но они позволяют корректно рассматривать непрерывную кривую во времени и пространстве как состоящую из бесконечного количества бесконечно малых участков.

Второй подход предложил Коши в начале XIX века. Его анализ построен на обычных вещественных числах, а для анализа непрерывных зависимостей используется теория пределов. Сходного мнения на обоснование анализа придерживались Ньютон, Даламбер иЛагранж, хотя были в этом мнении не всегда последовательны.

Оба подхода практически эквивалентны, но с точки зрения физика удобнее первый; в учебниках физики часто встречаются фразы вроде «пусть dV — бесконечно малый объём…». С другой стороны, вопрос о том, какой из подходов ближе к физической реальности, не решён. При первом подходе неясно, чему соответствуют в природе бесконечно малые числа. При втором адекватности физической и математической модели мешает тот факт, что операция перехода к пределу — инструментальный исследовательский приём, не имеющий никакого природного аналога. В частности, трудно говорить о физической адекватности бесконечных рядов, элементы которых относятся к произвольно малым интервалам пространства и времени (хотя как приближённая модель реальности такие модели часто и успешно используются)[5][38]. Наконец, не доказано, что время и пространство устроены сколько-нибудь похоже на математические структуры вещественных или гипервещественных чисел[33].

Дополнительную сложность внесла в вопрос квантовая механика, показавшая, что в микромире резко повышена роль дискретности. Таким образом, дискуссии о структуре пространства, времени и движения, начатые Зеноном, активно продолжаются и далеки от завершения.

Другие апории Зенона[править | править исходный текст]

Вышеприведенные (наиболее известные) апории Зенона касались применения понятия бесконечности к движению, пространству и времени. В других апориях Зенон демонстрирует иные, более общие аспекты бесконечности. Однако, в отличие от трёх знаменитых апорий о физическом движении, другие апории изложены менее ясно и касаются в основном чисто математических или общефилософских аспектов. С появлением математической теории бесконечных множеств интерес к ним существенно упал.

Стадион[править | править исходный текст]

Апория «Стадион» (или «Ристалище») у Аристотеля («Физика», Z, 9) сформулирована не вполне ясно:

Четвертый [аргумент] — о равных телах, движущихся по стадиону в противоположных направлениях параллельно равных [им тел]; одни [движутся] от конца стадия, другие — от середины с равной скоростью, откуда, как он думает, следует, что половина времени равна двойному.

Исследователи предлагали разные истолкования этой апории. Л. В. Блинников сформулировал её следующим образом[39]:

Два тела движутся навстречу друг другу. В этом случае одно из них затратит на прохождение мимо другого столько же времени, сколько оно затратило бы на прохождение мимо покоящегося. Значит, половина равна целому.

С. А. Яновская предлагает иное истолкование, основанное на атомистических предпосылках[40]:

Пусть время состоит из неделимых протяженных атомов. Представим себе на противоположных концах ристалища двух бегунов, настолько быстрых, что на пробег от одного до другого конца ристалища каждому из них требуется один только атом времени. И пусть оба одновременно выбегают с противоположных концов. Когда произойдет их встреча, неделимый атом времени разделится пополам, т. е. в атомы времени тела не могут двигаться, как это и было предположено в апории <Стрела>.

По другим интерпретациям, эта апория аналогична парадоксу Галилея: бесконечное множество может быть равномощно своей части.

Множественность[править | править исходный текст]

1   2   3   4   5   6   7


написать администратору сайта