Главная страница
Навигация по странице:

  • 1.Значения дыхания в жизни растений.

  • 2. Развитие представлений о природе механизмов и путях окислительно-восстановительных превращений в клетке. Теория дыхания паладина. Перекисная теория окисления Баха.

  • 3. Пути окисления органических веществ в клетке.

  • Анаэробные или пиридиновые дегидрогеназы.

  • Аэробные или флавиновые дегидрогеназы.

  • Оксигеназы.

  • Унификация субстратов дыхания. Дыхательные субстраты. Глюкоза – основной дыхательный субстрат у растений. Использование в качестве субстратов жиров и белков.

  • 5. Механизм активации дыхательных субстратов, пути их включения в процессы биологического окисления. Взаимосвязь превращения углеводов, белков и жиров.

  • 6.Ферментативные системы дыхания. Участие ферментов различных классов в дыхании. Альтернативность каталитического механизма биологического окисления.

  • 7. Механизмы активации водорода, субстрата и молекулярного кислорода. Механизмы участия кислорода в метаболизме.

  • 1. Значения дыхания в жизни растений


    Скачать 87.2 Kb.
    Название1. Значения дыхания в жизни растений
    АнкорShPOR_FZR_3.docx
    Дата12.01.2018
    Размер87.2 Kb.
    Формат файлаdocx
    Имя файлаShPOR_FZR_3.docx
    ТипДокументы
    #13920
    страница1 из 3
      1   2   3

    1.Значения дыхания в жизни растений.

    Образующиеся в процессе фотосинтеза органические вещества и заключенная в них химическая энергия служат основным источником материи и энергии для жизни всего органического мира нашей планеты.

    Схематически процесс дыхания можно выразить следующим простым уравнением:



    Энергия дыхания используется клеткой в ходе различных процессов жизнедеятельности.

    Дыхание является центром, в котором скрещиваются и увязываются в единое целое различные звенья и направления обмена. Важная роль принадлежит, например, дыханию в связывании процессов обмена углеводов и азотистых веществ клетки. Особое место принадлежит в этом случае кетокислотам, образующимся в ходе гликолитического распада сахара, а затем в цикле Кребса (пировиноградная, α-кетоглутаровая, щавелевоуксусная), которые, аминируясь, превращаются в соответствующие аминокислоты (аланин, глутаминовую, аспарагиновую), играющие центральную роль синтезе и обмене аминокислот и белковых веществ в целом.

    Через дыхание осуществляется взаимосвязь процессов обмена углеводов и жиров. Так при окислении ацетальдегида образуется уксусная кислота, при конденсации двух молекул которой образуется ацетоуксусная кислота (СН3СОСН2СООН). Путем восстановления ацетоуксусная кислота превращается в одну из кислот жирного ряда — масляную.

    Универсальным путем синтеза жирных кислот в организме является последовательное наращивание углеродной цепи за счет присоединения ацетильных групп, донатором которых является уксусная кислота, ацетальдегид и другие соединения.

    Исключительная роль в пластическом обмене клетки, несомненно, принадлежит гексозомонофосфатному дыханию. Гексозомонофосфатный путь окисления является основным источником образования в клетке пентоз, которые необходимы при синтезе нуклеиновых кислот, а также при синтезе флавиновых ферментов, компонентов адениловой системы и т. д.

    В ходе апотомического дыхания (ПФП) образуются скелетные основы, необходимые для синтеза циклических аминокислот (тирозин, триптофан, фенилаланин и др.). Очень важная роль принадлежит в этом случае шикимовой кислоте. Шикимовая кислота является исходным продуктом для биосинтеза многих других циклических соединений, играющих важную роль в обмене веществ растительной клетки (полифенолы, хиноны, хинная кислота и т. д.).

    Возникающие в ходе дыхания продукты превращения гексоз могут быть использованы не только для удовлетворения пластических потребностей клетки, но они вместе с тем служат материальным источником, необходимым для построения ферментов и других биологически активных соединений.

    Все это указывает на огромное значение процессов дыхания для созидательных, конструктивных сторон жизнедеятельности растительной клетки.


    2. Развитие представлений о природе механизмов и путях окислительно-восстановительных превращений в клетке. Теория дыхания паладина. Перекисная теория окисления Баха.

    А. Н. Бах в 1897 разработал перекисную теорию биологического окисления, приложив ее к процессам дыхания. Суть перекисной теории заключается в следующем: молекулярный кислород имеет двойную связь и для того чтобы его активировать, необходимо эту двойную связь расщепить. Легко окисляющиеся соединения А взаимодействует с кислородом и, разрывая двойную связь, образуют пероксид АО2. Активация кислорода есть образование пероксида. Пероксидное соединение, взаимодействуя с соединением В, окисляет его; затем эта реакция повторяется со вторым атомом кислорода и второй молекулой В. Получается полностью восстановленное исходное соединение – акцептор кислорода А и полностью окисленное вещество В. Во второй и третьей реакциях, по баху, участвует пероксидаза. Соединение А Бах назвал «оксигеназой», он пришёл к заключению, что это те соединения, которые темнеют на воздухе при поранении тканей, что именно такого рода легко окисляющиеся вещества спопсобны присоединять кислород и образовывать пероксиды. Органические соединения могут окисляться благодаря отнятию Н2. Бах сделал упор на перекисную теорию, согласно которой биологическое окисление связано с отнятием протонов и электронов. Эту вторая гипотеза в дальнейшем была развита В. И. Палладиным в стройную теорию химизма дыхания. Он представил общую теорию химизма дыхания, разделив основное уравнение на анаэробную (1) и аэробную (2) части:

    1. С6Н12О6 + 6Н2О + 12R = 6СО2 + 12RН2

    2. 12RН2 + 6СО2 = 12R + 12 Н2О

    -----------------------------------------------

    С6Н12О6 + 6О2 = 6СО2 + 6Н2

    R – окрашенный дыхательный пигмент, способный отнимать водород от субстрата, а

    2 – бесцветный окрашенный хромоген. На анаэробном этапе глюкоза окисляется за счёт отнятия водорода, который с помощью редуктазы передается на дыхательный пигмент R (активация водорода!). по Палладину, дыхательный субстрат окисляется с участием воды, от которой тоже отнимается водород. На аэробном этапе дыхательный хромоген регенерирует в окислительную форму. Кислород необходим для отнятия электронов и протонов от хромогена, в результате чего образуется вода.


    3. Пути окисления органических веществ в клетке.

    Дыхательный коэффициент – это объемное или молярное отношение СО2, выделившегося в процессе дыхания, к поглощенному за это же время О2. Если используются углеводы, то коэффициент равен 1. Например, при использовании жиров коэффициент равен 0,7. При недостатке углеводов используются другие субстраты. Особенно это проявляется при прорастании семян, в которых запасными питательными веществами являются белки и жиры.

    Существует способа окисления, и все они связаны с отнятием электронов:

    1. Непосредственная отдача электронов: Fe2+ → Fe3+

    2. Отнятие водорода: гидрохинон → хинон

    3. Присоединение кислорода: 2водород + кислород = 2вода

    4. Оксиредуктазы

    Окисление дыхательных субстратов в ходе дыхания осуществляется с участием ферментов. Они называются оксиредуктазами, так как окисление одного вещества (донора электронов и протонов) сопряжено с восстановлением другого вещества (акцептора). Различают следующие группы ферментов.

    Анаэробные или пиридиновые дегидрогеназы. Это двухкомпонентные ферменты, коферментом которых является НАД или НАДФ. Они передают электроны различным акцепторам, но не кислороду и отнимают два протона от субстрата. Один протон присоединяется к коферменту, а другой выделяется в среду. В зависимости от белковой части различают более 150 ферментов.

    Аэробные или флавиновые дегидрогеназы. Они катализируют отнятие двух протонов от субстратов и передают электроны от анаэробных дегидрогеназ разным акцепторам (хиноны, цитохромы), в том числе и кислороду. Простетической группой служат производные витамина В2 – флавинадениндинуклеотид и флавинмононуклеотид.

    Оксидазы. Эти ферменты передают электроны от субстрата только на кислород. При этом образуются вода (переносятся на О2 4 электрона), перекись водорода (Н2О2) или супероксидный анион кислорода (О-2). Н2О2 и О-2 весьма токсичны и поэтому быстро превращаются в воду и кислород под действием каталазы и супероксиддисмутазы, соответственно.

    Оксигеназы. Они активируют кислород и катализируют его присоединение к различным органическим соединениям (аминокислоты, фенолы, ненасыщенные жирные кислоты, ксенобиотики – чужеродные токсичные вещества).


    1. Унификация субстратов дыхания. Дыхательные субстраты. Глюкоза – основной дыхательный субстрат у растений. Использование в качестве субстратов жиров и белков.

    Одно из условий течения процессов дыхания − в наличии в ткани необходимых органических соединений. Вопрос о веществах, которые могут служить субстратом дыхания растительных тканей, должен решаться с учетом следующих положений.

    1. Растительная клетка обладает каталитическими механизмами, позволяющими ей использовать в качестве дыхательного материала большое число органических соединений различной химической природы.

    2. Окислительно-восстановительные превращения одного и того же соединения могут осуществляться, как правило, двумя или несколькими путями, отличающимися химическими и энзиматическими механизмами. При невозможности непосредственного окисления вещества последнее предварительно превращается в соединение, для которого имеющиеся в клетке ферментные системы пригодны.

    3. Окисление соединения может осуществляться как прямым путем, с участием специфического для данного вещества фермента, так и косвенными неспецифическими путями.

    Субстраты дахания.

    1) Углеводы. Общие особенности обмена зеленых растений являются причиной того, что основным дыхательным материалом служат углеводы: всем без исключения моносахариды и полисахариды I порядка, а также ряду полиоз II порядка (крахмал, инулин, гемицеллюлозы). Полимерные формы углеводов, как правило, используются в дыхании после предварительного их расщепления гидролитическим или фосфоролитическим путем.

    Влияние концентрации сахаров в листьях на их дыхательную активность впервые установил И. П. Бородин.

    2) Производные углеводов, например глюкозиды, пектиновые вещества. Окислительным превращениям этих соединений должно предшествовать их гидролитическое расщепление.

    3) Жиры. Первым этапом служит, очевидно, гидролиз молекулы жиров на составляющие ее компоненты (жирная кислота, глицерин), каждый из которых может служить субстратом дыхания.

    4) Белки. Изучая дыхание молодых частей побегов, лишенных углеводных запасов, Бородин подчеркивал, что интенсивность процесса зависит от содержания протоплазменных белков. Близких взглядов в этой области придерживался Палладии и ряд других исследователей. Однако большинство физиологов принимали, что единственным дыхательным субстратом служат углеводы либо их производные, способные в процессе обмена веществ вновь превращаться в углеводы (например, жиры).

    Использования на дыхание белковых веществ для нормальных условий жизни считалась мало вероятной. «Белковое» дыхание («голодное дыхание») было принято относить к явлениям патологическим. Подчеркивалось, что оно наступает только после истощения углеводных запасов клетки.

    Исходя из современного состояния знаний об энзиматических системах дыхания, можно утверждать, что клетка использует в качестве нормального субстрата дыхания и белковые соединения. Относительная стабильность содержания в тканях белковых веществ, в действительности, явление кажущееся. Она основано лишь на хорошей сбалансированности процессов распада и новообразования белковых веществ, которые осуществляются в живой системе непрерывно и с большой активностью. Однако при истощении углеводных запасов листьев в результате голодания потери белков уже не компенсируются.

    Что касается самого химизма использования белковых веществ в дыхании, то всего вероятнее, что этот процесс осуществляется через окисление аминокислот.

    5. Механизм активации дыхательных субстратов, пути их включения в процессы биологического окисления. Взаимосвязь превращения углеводов, белков и жиров.

    Существуют две основные системы и два основных пути превращения дыхательного субстрата, или окисления углеводов: 1) гликолиз + цикл Кребса (гликолитический); 2) пентозофосфатный (апотомический). Относительная роль этих путей дыхания может меняться в зависимости от типа растений, возраста, фазы развития, а также в зависимости от условий внешней среды. Процесс дыхания растений осуществляется во всех внешних условиях, в которых возможна жизнь. Растительный организм не имеет приспособлений к регуляции температуры, поэтому процесс дыхания осуществляется при температуре от —50 до +50 °С.

    Анаэробная фаза дыхания (гликолиз): Активация глюкозы происходит путем фосфорилирования шестого углеродного атома за счет взаимодействия с АТФ. Реакция идет в присутствии ионов магния и фермента гексокиназы: глюкоза + АТФ→глюкозо-6-фосфат + АДФ.

    ПФП: глюкоза также подвергается первоначальному фосфорилированию с образованием глюкозо-6-фосфата, затем пути расходятся. Монофосфорный эфир глюкозы подвергается окислению при участии фермента глюкозо-б-фосфат- дегидрогеназы. Коферментом является НАДФ, при этом образуется фосфоглюконовая кислота.

    Для дыхания нужны в качестве субстратов углеводы, которые образуются в ходе фотосинтеза. Многие промежуточные продукты дыхания необходимы для биосинтеза важнейших соединений. Триозофосфат, превращаясь в глицерин, может использоваться при синтезе жиров. Пировиноградная, кетоглутаровая и щавелевоуксусная кислоты путем аминирования превращаются в аланин, глютаминовую и аспарагиновую аминокислоты. Они используются при синтезе белков. Ацетилкоэнзим А является исходным материалом для образования жирных кислот. Эритрозо-4-фосфат, реагируя с фосфоэнолпировиноградной кислотой, образует шикимовую кислоту, которая необходима для образования ароматических аминокислот, например, триптофана. Триптофан участвует в синтезе белков и является предшественником фитогормона 3-индолилуксусной кислоты.

    6.Ферментативные системы дыхания. Участие ферментов различных классов в дыхании. Альтернативность каталитического механизма биологического окисления.

    Окисление органических соединений в живых тканях протекает при участии Ф системы осуществляющих активацию Н2 и О2 и ферментов. Особености окислительного аппарата рестений: мультипринцип, принцип множественности при построении окислительной системы у растений. Множественности различных альтернотивных путей окисления. Полифункционирование каталитической системы (наличие не спецефических катализаторов); Расредаточеность – для большенства ферментных белков характерно наличие молекулярных форм. Они иногда способны диссоциировать, образуя субьеденици. В процессе дых. принимают участие специфические ферменты из класа оксидоредуктаз к которым относятся анаэробные дегидрогеназы(передают электроны различ. промежуточным акцепторам, но не кислороду), аэробные дегидрогеназы (перед. электроны различным акцепторам, в том числе кислороду) и оксиредуктазы (передают электроны только кислороду). Механизмы вовлечения молекулярного О2 в окислительные реакции растительной клетки: 1.восстановление кислорода одно- или двухвалентными донорами. Ферменты – оксидазы. 2.восстановление молекулярного О2 двухвалентными донорами с включением образованного продукта восстановления в окисляемую молекулу(гидроксилазы); 3.непосредственное включение О2 в молекулу окисляемого субстрата (трансферазы или оксигеназы).

    В результате восстановления кислорода с участием оксидаз образуются вода, Н2О2 или супероксидный анион кислорода. Компоненты ЭТЦ сочетаются у разных видов растений самым различным образом, что связано со специфическими особенностями отдельных органов и тканей растения. Сочетание это изменяется в ходе развития организма, зависит от условий развития и т. д. Однако установлено, что наряду с энергией, поставляемой митохондриями, некоторая часть энергии генерируется в ядрах. Достаточно полноценной системой окислительно-восстановительных ферментов обладают пластиды (прежде всего, хлоропласты); растворимая фаза клетки и др. Таким образом, растительная клетка обладает многочисленной, гетерогенной в функциональном отношении системой энзиматических механизмов, которые дают ей возможность мобилизовывать электроны от различных субстратов и передавать их кислороду.

    Независимо от особенностей системы ЭТЦ, свойственных отдельным органоидам, в основе их построения лежит единый принцип - возможно большее удлинение цепи транспорта электронов, так как живая клетка приспособлена к использованию небольших количеств энергии, высвобождающихся при взаимодействии систем с близкими потенциалами. Чем больше перепады энергии, тем менее продуктивно она используется, тем ниже коэффициент полезного действия энергии данной реакции для клетки. Энергия дыхания, которая не используется для синтетических функций клетки, на поддержание структуры и другие процессы, превращается в тепловую и рассеивается.

    7. Механизмы активации водорода, субстрата и молекулярного кислорода. Механизмы участия кислорода в метаболизме.

    В создании современных представлений о биологическом окислении большое значение имели работы двух крупнейших русских ученых — В. И. Палладина (1859—1922) и А. Н. Баха (1857—1946). Работы А. Н. Баха были посвящены возможности активации кислорода воздуха. Молекулярный кислород — достаточно инертное соединение. Бах выдвинул предположение, что имеются ферменты-оксигеназы, активирующие кислород. Он считал, что процесс активации состоит в том, что происходит образование пероксидных соединений.

    В. И. Палладии первый стал рассматривать дыхание как ряд ферментативных реакций. Основное значение в процессе окисления он придавал процессу отнятия водорода от субстрата при участии воды. Содержание своей теории В. И. Палладии выразил в виде следующих уравнений:
    С6Н12О6 + 6Н2О + 12R → 6СО2 +12 RН2
    12 RН2 + 602 → 12R +12Н20
    С6Н12О6 + 6О2 -> 6СО2 + 6Н2О
    Символом R Палладин обозначал дыхательный пигмент, способный к обратимым окислительно-восстановительным превращениям. Из приведенной схемы вытекают следующие важные положения: 1. Непременным участником дыхания является вода. 2. Вода наряду с окисляемым субстратом выполняет роль донора водорода. 3. В процессе дыхания участвуют специфические активаторы водорода, отнимающие водород от субстрата. 4. Первые этапы дыхания являются анаэробными и не требуют присутствия молекулярного кислорода. 5. Молекулярный кислород используется на заключительном этапе дыхания для регенерации акцепторов водорода с образованием воды. Все указанные положения легли, как мы увидим, в основу современных представлений о процессе дыхания, согласно которым дыхание идет в две фазы — анаэробную и аэробную, и молекулярный кислород используется на регенерацию ферментов за счет Н+ воды и субстрата. В процессе дыхания активируется как водород субстрата, так и кислород воздуха.

    Образование активных форм кислорода играет важную роль в процессах биодеградации, например при отмирании тканей (клеточная смерть - апоптоз).
      1   2   3
    написать администратору сайта