Главная страница
Медицина
Экономика
Финансы
Биология
Сельское хозяйство
Ветеринария
Юриспруденция
Право
Языки
Языкознание
Философия
Логика
Этика
Религия
Политология
Социология
История
Информатика
Физика
Математика
Вычислительная техника
Культура
Промышленность
Энергетика
Искусство
Химия
Связь
Электротехника
Автоматика
Геология
Экология
Начальные классы
Доп
Строительство
образование
Механика
Воспитательная работа
Русский язык и литература
Дошкольное образование
Классному руководителю
Другое
Иностранные языки
Физкультура
Казахский язык и лит
География
Технология
Школьному психологу
Логопедия
Директору, завучу
Языки народов РФ
ИЗО, МХК
Музыка
Астрономия
ОБЖ
Обществознание
Социальному педагогу

БИОЛОГИЯ. 1. клетка как элементрнаяа един живого клет теория


Скачать 0.97 Mb.
Название1. клетка как элементрнаяа един живого клет теория
АнкорБИОЛОГИЯ.doc
Дата01.01.2018
Размер0.97 Mb.
Формат файлаdoc
Имя файлаБИОЛОГИЯ.doc
ТипДокументы
#13598
страница5 из 20
1   2   3   4   5   6   7   8   9   ...   20


Gо период заканчивается выходом в конец G1 периода вблизи точки рескрипции(-период когда клет цикла после которого клетка необратимо вовлекается в деление) с последующим делением клетки.

пример: гепатоциты могут делится если даже печень отделена.

ДЕЛЕНИЕ КЛЕТКИ:

1) митоз, или непрямое деления: Основной способ деления эукриотич клеток. Врезультате митоза образ 2е аналогичные клетки. (несущие одинаковый набор хромосом.)

2) амитоз, или прямое деление. Деление ядра претяжкой в время интерфазы. Равное распределение генетического материала не гарантируется. Характерен для некоторых одноклеточных.

3) мейоз или редукционное деление. При этом делении происходит редукция числа хромосом вдвое или переход клеток из диплойдного в гаплойдное состояния.

МИТОЗ:

- основной способ деления эукриотич клеток при которой из одной диплойдной материнской клетки образ 2е идентичные дочерние диплойдные клетки.

При митозе происходит точное распределение последовательного и цитоплазматического материала. Митоз хар-ся чередование процессов: кариокинеза (деления ядра) и цитокинеза (деления цитоплазмы).

В митоз вступают диплойдные клетки с двухроматидными хромосомами. В результате митоза образ 2е диплойдные клетки с однохроматидными хромосомами.

1) профаза. (ранняя) – расхождение центриолей к полюсам клетки. От центриолей начинается полимеризация микротрубочек веретена деления. Хромосомы спирализуются становясь видными в световой микроскоп. происходит фрагментация ядерной оболочки. исчезает ядрышко.

профаза. (поздняя) – ядерная оболочка полностью исчезает. К центромере каждой хромосомы прикрепляются по 2 микротрубочки веретена деления. Хромосомы начинают перемещатся к экватору клетки. (формир веретена деления).

2)метафаза – Максимально спирализованные хромосомы выстраиваются на экваторе образуя метафазную пластинку. Полностью сформировано веретено деления. (закрепление центриолей а мембране клетки)

3) анафаза – центромеры расшепляются вдоль. Каждая хроматида становится однохроматидной хромосомой. Набор ген материала в клетке 4n4c. Однохроматидные хромосомы расходятся к полюсам клетки (за счет согласованной работы нитей веретена деления.)

4) телофаза (ранняя) - хромосомы начин деспирилизоватся вокруг них формируется ядерные оболочки, восстанавливаются ядрышки что свидетельствует о начале синтетических процессов.

телофаза (поздняя) – или цитокинез. по разному происходит в клетках растений и животных.

У животных: в живот клетке между ядрами образ перетяжка за счет элементов цитоскелета.

У растений: в клетках растений между ядрами образуется пластинка – фрагмопласт. Она образ за счет слияния пузырьков гольджи и содержит в себе элементы клеточной мембраны и клеточную стенку.


22. мейоз

происход в жизн цикле организмов размножающихся половым путём, при мейозе из одной диплойдной клетки образ 4 гаплойдные клетки. Мейоз сост из 2х послед делений.

В мейоз вступает клетка с набором генетич материала 2n4c. в результ редукцион дел образ 2 гаплойдные клетки с двухроматидными хромосомами. В результате эквацион делен образ 4е гаплойдные клетки с однохроматидными хромосомами.

(1) редукционное (Первое мейотическое) деление.

профаза 1: Спирализация и уплотнение хромосом.(пахитема) Гомологичные хромосомы сближаются своими парными участками, то есть начинается процесс конъюгации.(зиготена) Хромососомные пары называются бивалентами. Каждый бивалент имеет 4 хроматиды. Гомологичные хромосомы переплетаются соответствующими участками хроматид (пахитема) (процесс кроссинговера). В результате кроссинговера происходит обмен гомологичными участками хромосом и "перемешивание" генов. Разрушается ядерная оболочка и формируется веретено деления.

(диплотена- происход фрагментация ядерн оболочки, к центромере кажд хромосомы присоед по одной микротрубочке веретена деления.;

диакинез – биваленты направлл к экватору клетки, гомологич хромосомы начин отделятся друг от друга в районе центромеры.)

метафаза 1: Завершение формирования веретена деления. В би­валентах от каждой центромеры идет только одна нить к одному из полюсов клетки. Биваленты уста­навливаются в плоскости экватора веретена деле­ния. образуя метафазную пластинку.

анафаза 1: Гомологичные хромосомы разделяются и расходят­ся к полюсам клетки. В результате этого процесса хромосомы разделяются на два гаплоидных набора, концентрирующихся у полюсов клетки. Каждый гаплоидный набор состоит из группы парных хроматид.

телофаза 1: У полюсов клетки собирается одиночный (гаплоид­ный) набор хромосом. Каждый вид хромосом пред­ставлен в этой группе одной хромосомой, состоящей из двух хроматид. Вокруг хромосом восстанавливаются ядерные оболочки.

выводы: после первого деления мейоза образу­ются группы гаплоидных наборов деойпых хромосом. Но набор ДНК является диплоидным, так как хромосомы двойные! В процессе же митоза к полюсам клетки расходятся хроматиды, которые после расхождения называются хромосомами. Между делениями мейоза удвоения ДНК не происходит!

(2) эквационное (второе мейотическое) деление:

профаза 2: В растительных клетках эта фаза отсутствует. У жи­вотных является непродолжительной. Разрушаются ядрышки и ядерные мембраны. Хроматиды укорачиваются и утолщаются. Формируется веретено де­ления.

метафаза 2: От центромеров каждой двойной хромосомы к по­люсам клетки отходят нити веретена деления. Хро­мосомы выстраиваются по экватору веретена деле­ния.

анафаза 2: Центромеры разделяются и каждая хроматида назы­вается теперь хромосомой. Дочерние хромосомы растягиваются нитями веретена деления к полюсам.

телофаза 2: Хромосомы деспирализуются и растягиваются. Ни­ти веретена деления разрушаются. Происходит уд­воение центриолей. Вокруг каждой группы хромо­сом (гаплоидной!) образуется ядерная оболочка.

выводы: Далее следуем разделение цитоплазмы. В результате мейоза из каждой диплоидной клетки образуется 4 клетки с гапло­идным набором хромосом. Благодаря мейозу поддерживает­ся постоянство хромосомного состава организмов при по­ловом размножении. Другим значением мейоза является по­вышение биологического разнообразия, которое возникает при «смешивании» участков гомологичных хромосом^ в ре­зультате кроссинговера.

23. биологич основы регул клеточного цикла. циклины и циклинзавис киназы.

Ведущую роль в поочерёдной смене фаз клеточного цикла играют циклинзависимые протекиназы или Цзк. Известно несколько форм Цзк, которые обозначаются соответствующими арабскими цифрами: Цзк 1, Цзк 2, Цзк 3, Цзк 4, Цзк 5, Цзк 6 и др.

Основная функция кназ заключается в фосфорилировании и, как следствие этого, активация или инактивации опреденных белков, участвующих в соответствующих фазах клеточного цикла.

Молекулы любой циклинзависимой киназы постоянно присутствуют в клетке и сами по себе неактивны. Их активация происходит в результате связывания с ними специальных белков – циклинов. Это название указанные белки получили в связи с тем, что их содержание на протяжении клеточного цикла сменяется циклическим образом.

Особенности комбинаций циклинов и циклинзависимых киназ в составе комплексов играют ключевую роль в механизмах, определяющих поочередную смену фаз клеточного цикла.

Молекулярные эффекты действия МСФ (митоз стимул факт):

1) фосфорилирование гистона Н1 – конденсация хроматина. 2)фосфорилирование ламинов – разруш ядерной оболочки. 3) фосфорилирование тубулинов – рост микротрубочек и образ веретена деления. 4) фосфорилирование белка – фактора, стимулирующего анафазу или ФСА.

Фактор стимулирующий анафазу (ФСА) обладает способностью избирательно присоединять молекулы убиквитина – белка с небольшим молекулярным весом, к другим белковым молекулам, тем самым, как бы оставляя на них «метку». В результате такие меченые белки захватываются протеосомами, где под действием протеолитических ферментов протеосом они разрушаются.

Под влияние ФСА: 1)разруш белки удерживающие сестринские хроматиды, в результате чего последние получают возможность расходится в противоположным полюсам клетки. 2) разрушается МСФ 3) осуществляется дефосфорилирование протеинфосфатазами белков, фосфорилированных в про- и метафазу митоза. 4) восстановление ядерных оболочек 5) происходит деконденсация хромосом. 6) осуществляется цитотомия

(протекают процессы сходные с событиями про- и метафазы митоза, но как бы с обратным знаком.)

Действие комплекса циклин-Цзк заключ в: 1) инактивации комлекса циклин-Цзк предшествующей фазы клеточного цикла. 2) стимулировании процессов свойственных «своей» фазе. 3) активация комплекса циклин-Цзк следующей фазы.

Ведущую роль во всех указанных преобразованиях играет модификация белков путём фосфорилирования и дефосфорилирования их циклинзависимыми киназами.

В процессе клеточного цикла обеспечивается также постоянный контроль состояния наследственного материала, ДНК и хромосом. Ели состояние наследственного материала нарушается, то наступает либо длительная задержка клеточного цикла на текущей стадии развития для коррекции повреждений, либо она погибает в результате запуска механизмов апоптоза – программированной клеточной смерти.

24. клет цикл. Биологич контроль ст наследств материала. белок р53

жизненный цикл

М- митоз, G1 –пресинтетический, S – синтетический, G2 – постсинтетический, Gо – период пролиферативного покоя.

Большую часть клеточного цикла занимает интерфаза – подготовка к следующему делению. в интерфазе 3 периода – G1,S,G2.

У млекопитающих длительность S – периода интерфазы составляет 6-10 часов, G2 –периода 2-5 часов, митоза 1-1,5 часа, G1-периода около 11-13 часов.

В пресинтетическом(постметатический): интенсивно проходят роцессы синтеза. образ органеллы клетки. инетенсивно проходит метаболизм. и пост клетки

В синтетическом: происходит удвоение ДНК. синтезируются гистоны. кажд хромосома превращ в 2е хроматиды.

В постсинтетический (премитотический): интенсив проход процессы синтеза, проходит деление митохондрии и хлоропластов. Активно запасается АТФ. репликация цетриолей и начало образ веретена деления.

для большинства клеток многоклет организма хар-на стадия Gо (пролиферативного покоя).

В этой стадии клетки утрачивают способность к делению и приобретают специализацию за счёт синтеза определённых белков.

2 стадии: - первичная (деление не дифференцир клеток) и – вторичная (деление ранее дифференцир клеток).

Gо период заканчивается выходом в конец G1 периода вблизи точки рескрипции(-период когда клет цикла после которого клетка необратимо вовлекается в деление) с последующим делением клетки.
Центральную роль в остановке клеточного цикла играет белок р53, который служит транскрипционным фактором генов, отвечающих за остановку клеточного деления (например гена белка р21, являющегося ингибитором всех комплексов циклин – Цзк), а также генов, запускающих апоптоз.

Белок р53 синтезируется постоянно, но в обычных условиях его активность оказывается весьма низкой и лишь при нарушении при нарушениях структуры ДНК, хромосом микротрубочек, участвующих в формировании веретена деления, и других структур клетки, она значительно возрастает. Высокая активность белка р53 вызывает остановку клеточного цикла, либо гибель клетки.

активация белком р53 гена белка р21: белок р21 – связывается с комплексом циклин-Цзк и останавливает клеточный цикл.

Белок р53 активирует транскрипцию гена, кодирующего белок р 21.
25. половые клетки. этапы гаметогенез. строение сперматозоида. . классифик яйцеклеток по колич пит веществ и их распред в цитоплазме.

Гаметы— репродуктивные клетки, имеющие гаплоидный (одинарный) набор хромосом и участвующая в гаметном, в частности, половом размножении. При слиянии двух гамет в половом процессе образуется зигота, развивающаяся в особь (или группу особей) с наследственными признаками обоих родительских организмов, продуцировавших гаметы.

У некоторых видов возможно и развитие в организм одиночной гаметы (неоплодотворённой яйцеклетки) — партеногенез.

Сперматозо́идыгаплоидные (содержащие половинный одинарный набор хромосом) клетки, являющиеся мужскими гаметами у человека и многих видов животных.

Сперматозоиды содержатся в биологической жидкости, называемой сперма и предназначены для оплодотворения яйцеклетки с целью формирования зиготы. Зигота может развиться в новый организм, такой как, например, человек.

Сперматозоиды состоят из головки с акросомой, митохондрина, тела, хвостика и жгутика.
ГАМЕТОГЕННЕЗ – формир гамет и их послед силяние. гаметогенез проиход в ганадах. На начал стадиях эмбрионального развития.

ООГЕНЕЗ

Ф. размнож: Митотич делен оогониев инициируется и завер-ся еще в эмбрионал периоде. Происход меньше делений, чем при сперм-зе

Ф. роста: Проход 2 фазы роста: превителлогенез - увелич массы ядра и цитоплазмы и вителлогенез - накопл желтка при помощи вспомогат фолликулярн клеток, окружающих ооциты I. Выдел стадию диктиотены, связан с активн процессами синтеза.

Ф. созревания: Начин-ся в эмбрион периоде. Ооциты I вступ в 1 деление мейоза и на стадии диакинеза приостанавл свое развит. Возобновлен мейоза происход в репродуктивн возрасте. Перед овуляцией ооцит II вступ во 2 делен и на стадии метафазы покидает яичник. Завершен деления созреван происходит только при слиян со сперматозоид.

Ф. формир: отсутств

Результат: При кажд делен мейоза исходн клетка дает лишь одну полноцен. 2я представл собой редукцион тельце. Образ 1 яйцеклетка и три редукционных тельца

СПЕРМАТОГЕНЕЗ

Ф. размнож: Митотическое деление сперматогониев в основном начинается после полового созревания и идет на протяжении всей жизни

Ф. роста: Из-за незавершенного деления сперматоциты I остаются связанными между собой, т.е. формируется синцитий. Увеличение размера (

в 4 раза) не связано с накоплением питательных веществ.

Ф. созревания: Созревание происходит непрерывно. После первого деления мейоза сперматоциты I образуют сперматоциты II. В результате эквационного деления образуются сперматиды.

Ф. формир: Образуется жгутик, сбрасывается большая часть цитоплазмы, синтезируются лизирующие ферменты, оформляется акросома, компактно упаковывается хроматин

Результат: Из каждого сперматогония образуются 4 сперматозоида, половина содержит Х-хромосому, половина У-хромосому

Классиф яйцеклеток по колич желтка

  • Алецитальные (безжелтковые) Эти яйцеклетки практически лишены желтка, имеют микроскопически малые размеры (0,1-0,3 мм). Обеспечение питательными веществами преимущественно за счет фолликулярных клеток, которые их окружают (у млекопитающих). Плацентарные млекопитающие, в том числе и человек. Плоские черви.

  • Олиголецитальные Маложелтковые. Ланцетник, иглокожие, брюхоногие и двустворчатые моллюски.

  • Мезолецитальные Содержат среднее количество желтка. Амфибии, рыбы.

  • Полилецитальные Многожелтковые. Птицы, пресмыкающиеся, яйцекладущие млекопитающие, насекомые, головоногие моллюски.


Классиф яйцеклеток по распред желтка

  • Изолецитальные(или гомо-лециталъные). Относительно мелкие яйцеклетки с небольшим или средним количеством желтка, равномерно распределенным по цитоплазме. Ядро в них располагается ближе к центру. Таким образом, это олиголецитальные яйца с более или менее равномерным распределением желточных включений в цитоплазме. Гомолециталъные яйца могут иметь и очень большое количество желтка (у гидр и низших червей - немертин). Ланцетник, плацентарные млекопитающие, многие беспозвоночные - например, иглокожие, двустворчатые и брюхоногие моллюски и низшие черви (немертины), кишечнополостные.

  • Умеренно телолецитальные. Имеют диаметр около 1,5-2 мм и содержат среднее количество желтка, преимущественно сосредоточенного на одном (вегетативном) полюсе яйцеклетки. На противоположном полюсе (анималъном), где желтка мало, находится ядро яйцеклетки. Земноводные, осетровые и некоторые другие рыбы, круглоротые.

  • Резко телолецитальные . Содержат очень много желтка, занимающего почти весь объем яйцеклетки и неравномерно распределенного по цитоплазме. Это мезо- и полилецитальные яйца, у которых желток сосредоточен на вегетативном полюсе яйцеклетки, а анимальный полюс почти не содержит желтка. Ядро расположено ближе к анимальному полюсу, на котором находится зародышевый диск с активной, лишенной желтка цитоплазмой. Размеры этих яиц крупные - 10-15 мм и более. Пресмыкающиеся, птицы, яйцекладущие (низшие) млекопитающие, акулы, скаты, костистые рыбы, головоногие моллюски.

  • Центролецитальные Желток распределен равномерно и сосредоточен в центре клетки, а периферическая часть его лишена. Это мезо- и полилецитальные яйца, в которых цитоплазма образует тонкий поверхностный слой, кроме того, в центре яйца имеется островок цитоплазмы, содержащий ядро. Насекомые, клещи и многих другие членистоногие, некоторые другие беспозвоночные.

26. формы бесполого и полового размнож у эукариот.

Формы пол размнож многокл:
1   2   3   4   5   6   7   8   9   ...   20
написать администратору сайта