Главная страница
Медицина
Экономика
Финансы
Биология
Сельское хозяйство
Ветеринария
Юриспруденция
Право
Языки
Языкознание
Философия
Логика
Этика
Религия
Социология
Политология
История
Информатика
Физика
Вычислительная техника
Математика
Искусство
Культура
Энергетика
Промышленность
Химия
Связь
Электротехника
Автоматика
Геология
Экология
Строительство
Механика
Начальные классы
Доп
образование
Воспитательная работа
Русский язык и литература
Классному руководителю
Другое
Дошкольное образование
Казахский язык и лит
Физкультура
Школьному психологу
Технология
География
Директору, завучу
Иностранные языки
Астрономия
Музыка
ОБЖ
Социальному педагогу
Логопедия
Обществознание

Большая шпаргалка. 1. История развития радиобиологии


Название1. История развития радиобиологии
АнкорБольшая шпаргалка.doc
Дата26.04.2017
Размер133 Kb.
Формат файлаdoc
Имя файлаБольшая шпаргалка.doc
ТипДокументы
#5844
КатегорияБиология. Ветеринария. Сельское хозяйство

1. История развития радиобиологии

Радиобиология – наука, изучающая механизмы и закономерности действия ИИ на биологические объекты в биологии, медицине, сельском хозяйстве и других сферах деятельности человека.

1895 – В. К. Рентген обнаружил Х-лучи.

1896 – А. Беккерель установил радиоактивность солей урана. Мария Склодовская и Пьер Кюри продолжили исследование радиоактивных элементов полония и радия, содержащихся в виде примесей в солях урана.

Сначала радиобиология носила описательный характер, разработаны методы оценки биологических реакций с позиции «доза-эффект» на уровнях от молекулярного до организменного.

На основе работ Г. А. Надсона и Г. Ф. Филиппова о генетическом воздействии излучений и исследований Г. Мюллера была введена количественная оценка радиобиологических эффектов в радиационную генетику.

Ветеринарная радиобиология изучает эффекты биологического действия радиации и выясняет особенности развития возникающих патологических процессов у животных.

В учебный план вузов курс радиобиологии был введен в 1959 г.

2. Строение атома

В 1911 г. Э. Резерфорд предложил планетарную модель атома, которую разил в 1913 г. Н. Бором.

Атом состоит из нейтронов, протонов и электронов.

Электронная оболочка – электроны группируются вокруг ядра на различных уровнях в зависимости от энергии, удерживающей их на орбите: K, L, M, N, O, P, Q.

Электрон – устойчивая элементарная частица с массой покоя (масса при скорости равной 0) 0,000548 U, 9,1∙10-28 г.

Протон – устойчивая элементарная единица, 1,00758 U, 1,6725∙10-24 г. Количество протонов в ядре называется атомным номером или зарядовым числом.

Нейтрон – электрически нейтральная частица, 1,00898 U. Сам по себе нестабилен. В свободном состоянии он испускает электрон и антинейтрино, превращаясь в протон. Он не отталкивается атомным ядром, не отклоняется под действием магнитного поля, обладает большой проникающей способностью.

Массовое число – сумма нейтронов и протонов в ядре.

Число нейтронов N=A-Z, где А – массовое число, а Z – порядковый номер.

Ионизация – отделение или присоединение к атому одного или нескольких электронов.

Рекомбинация, или деионизация – процесс замещение отщепившегося с орбиты атома электрона с выделением избыточной энергии.

Возбуждение – переход одного электрона на другой уровень (орбиту).

3. Явление радиоактивности. Естественная и искусственная радиоактивность. Радиоизотопы

Радиоактивность – явление самопроизвольного излучения. Это свойство ядер определенных элементов самопроизвольно превращаться в ядра других элементов с испусканием радиоактивного излучения. Само явление называется радиоактивным распадом. Радиоактивность является исключительно свойством атомного ядра и зависит только от его внутреннего состояния.

Естественная радиоактивность – это радиоактивные явления, происходящие в природе.

Искусственная радиоактивность – явление радиоактивности в искусственно полученных веществах через ядерные реакции.

Деление на естественную и искусственную радиоактивность условно, поскольку они подчиняются одним и тем же законам.

4. Виды ионизирующего излучения и их характеристика

Альфа-частицы представляют собой ядра гелия и состоят из 2 протонов и 2 нейтронов, имеют положительный заряд 9,6∙10-10 эл. ст. ед. и массу 4,003 U, энергия 2-11 МэВ. Пробег в воздухе – 2-10 см, в тканях организма – несколько микрон.

Бета-излучение представляет собой поток частиц (электроны или позитроны), испускаемых ядрами при бета-распаде. Характеристика составляющих частиц аналогична характеристике электронов. Обладают различным запасом энергии (0-0,05 МэВ – мягкое, 3-12 - жесткое). Пробег в воздухе может составлять до 25 м, в биологических тканях до 1 см.

Гамма-излучение – это поток электромагнитных волн. Рентгеновское излучение: тормозное – при торможении быстрых электронов в электрическом поле ядра атома и характеристическое – при перестройке электронных оболочек атомов при ионизации и возбуждении атомов и молекул. Энергия гамма-излучения 2-6 МэВ, нет заряда и массы покоя. Вызывает слабое ионизирующее действие, но обладает большой проникающей способностью. Путь пробега в воздухе составляет 100-150 м.

5. Радиоактивный распад (альфа-распад)

Сопровождается испусканием из ядра неустойчивого элемента альфа-частицы, представляющей собой ядро атома гелия. При вылете альфа-частицы ядро теряет 2 протона и 2 нейтрона и превращается в котором число протонов (заряд ядра) уменьшено на 2, а число частиц (массовое число) на 4. Дочерний элемент смещается на 2 клетки периодической таблицы элементов влево.

, где X – символ исходного ядра, Y – символ ядра продукта распада, Q – освобожденный избыток энергии.

Например:



Ядра атомов веществ с порядковым номером Z более 82 за редкими исключениями альфа-активны. С Z<82 – стабильны.

6. Взаимодействие гамма-излучения с веществом

Фотоэлектрическое поглощение – гамма-квант, сталкиваясь с прочно связанным электроном (чаще К-слоя) в атомах облучаемого вещества, полностью отдает ему свою энергию, сам исчезает, а электрон приобретает его кинетическую энергию.

Комптоновский эффект – гамма-кванты, сталкиваясь с электронами, передают им не всю энергию, а только часть ее, а после соударения изменяют свое направление движения, т. е. рассеиваются. Кванты взаимодействуют с внешними электронами (валентными).

Образование пар – преобразование гамма-квантов в частицы вещества. Образовавшаяся электронно-позитронная пара аннигилирует, превращаясь в 2 вторичных гамма-кванта. Вторичные способны вызывать лишь фото- или комптонэффект.

Закон ослабления пучка гамма-лучей:

, где I – интенсивность пучка лучей, прошедших через слой поглотителя d, I0 – интенсивность падающего пучка гамма-лучей, μ – линейный коэффициент ослабления, равный уменьшению интенсивности пучка гамма-лучей после прохождения слоя поглотителя толщиной 1 см.

7. Ядерные реакции. Реакция активации и ее практическое значение

Искусственное превращение ядра атома впервые совершил Резерфорд в 1919 г.:



Реакция активации (реакция радиационного захвата) – происходит захват нейтрона, причем ядро теряет часть избыточной энергии в форме γ-кванта:



Реакция активации возникает при столкновении потока медленных нейтронов со стабильными ядрами, которые захватывают их и превращают в собственный радиоактивных изотоп. Именно такая реакция наблюдается у стабильных элементов крови и других тканей при нейтронном облучении животных, вызывая наведенную радиоактивность организма.

Создание ускорителей, а также использование нейтронов в ядерных реакторах расширили возможности получения искусственных радиоактивных изотопов, которые нашли широкое применение в биологии, медицине, ветеринарии, а также в других отраслях науки и практики.

8. Естественные и искусственные источники ионизирующих излучений и их воздействие на организм животных

Космическое излучение – это ИИ, непрерывно падающее на поверхность земли из мирового пространства: первичное космическое излучение и образующееся в результате взаимодействия с атомами воздуха вторичное.

Природные радиоактивные вещества: рубидий-87 характеризуется мягким бета-излучением и имеет большой период полураспада; калий-40 – жесткое бета- и гамма-излучение; уран и торий, содержащиеся в горных породах, дают радиоактивность до 1150 мрад/год при выходе слоев руды на поверхность, что превышает среднемировой уровень в 500 раз.

На организм животных оказывают влияние космическая радиация, излучения природные радионуклидов, рассеянных в почве, воде, воздухе, строительных и других материалах, содержащиеся в самом организме и поступающие с воздухом, водой и пищей калий-40, радий-226, углерод-14, водород-3, сообщая организму определенную поглощенную дозу.

Искусственные источники ИИ: рентгеновские установки, ускорители элементарных частиц, закрытые источники радиоизотопов, термоядерные и ядерные взрывы, продукты этих взрывов, которые вызывают локальное загрязнение.

Наведенная радиоактивность возникает в результате воздействия потока электронов, образующихся при цепной реакции деления урана и плутония, на ядра атомов различных веществ окружающей среды (реакция активации), что приводит к появлению радиоактивных изотопов с испусканием бета- и гамма-излучения.

9. Источники загрязнения природной среды искусственными радиоактивными изотопами

На организм животных оказывают влияние космическая радиация, излучения природные радионуклидов, рассеянных в почве, воде, воздухе, строительных и других материалах, содержащиеся в самом организме и поступающие с воздухом, водой и пищей калий-40, радий-226, углерод-14, водород-3, сообщая организму определенную поглощенную дозу.

Искусственные источники ИИ: рентгеновские установки, ускорители элементарных частиц, закрытые источники радиоизотопов, термоядерные и ядерные взрывы, продукты этих взрывов, которые вызывают локальное загрязнение.

Наведенная радиоактивность возникает в результате воздействия потока электронов, образующихся при цепной реакции деления урана и плутония, на ядра атомов различных веществ окружающей среды (реакция активации), что приводит к появлению радиоактивных изотопов с испусканием бета- и гамма-излучения.

10. Природный радиационный фон и его компоненты

Космическое излучение – это ИИ, непрерывно падающее на поверхность земли из мирового пространства: первичное космическое излучение и образующееся в результате взаимодействия с атомами воздуха вторичное.

Природные радиоактивные вещества: рубидий-87 характеризуется мягким бета-излучением и имеет большой период полураспада; калий-40 – жесткое бета- и гамма-излучение; уран и торий, содержащиеся в горных породах, дают радиоактивность до 1150 мрад/год при выходе слоев руды на поверхность, что превышает среднемировой уровень в 500 раз.

На организм животных оказывают влияние космическая радиация, излучения природные радионуклидов, рассеянных в почве, воде, воздухе, строительных и других материалах, содержащиеся в самом организме и поступающие с воздухом, водой и пищей калий-40, радий-226, углерод-14, водород-3, сообщая организму определенную поглощенную дозу.

11. Механизм биологического действия ионизирующих излучений

2 этапа:

1. Первичное действие излучения ан биохимические процессы, функции и структуры органов и тканей.

2. Опосредованное действие, которое обуславливается нейрогенными и гуморальными сдвигами, происходящим в организме под действием радиации.

ИИ обладают большой биологической активностью. Способны вызывать ионизацию любых соединений биосубстратов, образовывать активные радикалы, индуцировать длительно протекающие реакции в организмах животных.

Наиболее восприимчивы к ИИ ядра клеток.

12. Влияние ИИ на кроветворные органы и кровь

Костный мозг. При воздействии больших доз радиации еще в процессе облучения прекращается митоз клеток и появляются дегенеративные формы клеток эритро- и миелобластического ряда и мегакариоцитов. Восприимчивы (убываниие) эритробласты, пронормобласты, нормобласты, ретикулоциты, эритроциты. Происходит расширение синусов костного мозга, отечность, кровенаполненность, жировое и желатинообразное перерождение.

Лимфатическая ткань очень чувствительна к облучению. Полулетальные и летальные дозы приводят к выраженным сосудистым расстройствам, дегенерации, атрофии и некрозу.

Селезенка довольно рано реагирует на облучение, уменьшается масса и размер, полулетальная доза прекращает митоз полностью.

Тимус – после полулетальной дозы клеточное опустошение, погибает большая часть лимфоцитов, в разгар лучевой болезни – отдельные лимфоциты.

Лейкоциты при средних дозах увеличивают свою концентрацию до 3-5 суток, при больших дозах – нет.

Лимфоциты – уменьшение количества, наибольшее снижение через 1-3 суток, двухядерность, токсическая зернистость, вакуолизация и т. д.

13. Влияние ИИ на органы пищеварения

Восприимчивость: тонкий кишечник, слюнные железы, желудок, прямая и ободочная кишка, поджелудочная железа и печень.

При облучении сублетальными дозами возникает желудочно-кишечный синдром (летальный исход 7-10 суток), морфологические изменения в стенке кишечника, гибель эпителия и прекращение деления, обнажение стромы кишечника, нарушение барьерной функции и сепсис.

Слюнные железы – качественные и количественные сдвиги в секреции.

Желудок – при гиперсекреции понижается секреция желез, при гипо- - повышается, кровоизлияния, катары, язвы.

Кишечник – волнообразные повышения и понижения секреции, изменение активности ферментов. Нормализация функционального состояния может занимать до 5 месяцев.

Поджелудочная железа – малые дозы стимулируют образование ферментов, большие – подавляют. Происходят кровоизлияния, дегенеративные и атрофические процессы в железистой ткани. Отличается значительной радиорезистентностью.

Печень – понижается активность каталазы, окислительного фосфорилирования, повышается активность щелочной фосфатазы, угнетается процесс желчеобразования, изменяется обмен холестерина, изменяется качественный состав желчи и ухудшается ее эвакуация в просвет кишечника. Изменяются все виды обмена, возникают дегенеративные изменения, очаги кровоизлияния и некрозы в печеночной ткани.

14. Влияние ИИ на органы размножения и потомство животных

Начиная от зародыша и кончая половозрелым состоянием радиочувствительность орагнизма и его органов с увеличением возраста понижается. У половозрелых животных отмечены различия в радиочувствительности. У самок в отдельные стадии полового цикла чувствительность заметно снижена, что связано с защитной функцией половых гормонов.

Половые железы реагируют однотипно, больше страдает генеративная функция (гаметогенез) и меньше - гормональная деятельность.

Припостоянном облучении производительная функция животных может не нарушаться. Она нередко восстанавливается после переболевания этой болезнью с острым течением. Если родители выздоровели и в их половых клетках нет мутаций, то они дают полноценное потомство.

У потомства, полученного от пораженных матерей, наблюдаются большие изменения, чем при внешнем облучении. При этом с молоком матери продолжают поступать радионуклиды в концентрации в 5-12 раз больше, чем при внутриутробном развитии.

15. Влияние ИИ на ЭС, органы чувств, ССС и ОД

Сердце – изменение ритма сокращений, биохимические и гистохимические сдвиги в тканях, некроз без выраженной воспалительной реакции, изменяется ЭКГ.

Кровеносные сосуды – понижение АД, гиалиновое перерождение волокон наружного адвентиция сосудов, растут ломкость, проницаемость, тромбоцитопения, геморрагии, склероз в тяжелых случаях.

Легкие – изменение частоты и глубины дыхания, застойные явления, эмфизема, пневмонии, плевриты, хрипы и кашель до года.

ПНС - усиление и угасание импульсации, спонтанная импульсация, глубокие нарушения импульсации и ее патологии.

ВНС – активация и угасание нервных процессов.

ЦНС – смена фаз повышенной и сниженной возбудимости, изменение общей биоэлектрической активности (0,05 Р).

Глаза – сосудистые изменения, конъюнктивиты, потеря зрачкового рефлекса на свет, подавление миотической активности эпителия, лучевая катаракта хрусталика.

Гипофиз – снижается функция, набухание и уменьшение числа ацидофильных клеток, нарушения в гипоталамо-гипофизарной системе.

Надпочечники – повышение секреции, функциональное истощение, атрофия, изменяется масса и соотношение тканей в железе.

Щитовидная железа – гиперфункция, снижение функции, волнообразное повышение и снижение уровня активности, уменьшается масса, при больших дозах – злокачественные опухоли.

16. Влияние ИИ на различные ткани

Кожа – изменение чувствительности, морфологическое изменения рецепторов, многоядерность клеток, пикноз, нарушение ядер, набухание ядер, истончение эпидермиса, гиперкератоз, выпадение шерсти, гиперемия, иссушение, складчатость.

Соединительная ткань – набухание, перерождение, воспаление, язвы, рубцевание, изменения клеток, голые ядра, интенсивное старение до гибели организма.

Кости и хрящи у молодых животных чувствительны, у старых – радиорезистентны: разъединение костной и хрящевой ткани, прекращение роста костей, некрозы, переломы, кариес.

Мышечная ткань – наиболее радиорезистентная ткань, морфологические изменения происходят при местной облучении дозой в несколько тысяч рентген, однако при общем облучении животных изменения в мышечной ткани происходят в более ранние срои лучевой болезни.

17. Действие малых доз ИИ на организм

Действие малых доз ИИ имело большую роль в формировании разнообразия видов. Районы с повышенной активностью отличаются большим своеобразием растительных и животных видов.

При определенных условиях результат облучения может быть стимулирующим, угнетающим и летальным. Стимулирующее действие оказывают малые дозы ИИ.

Применяется в производстве антибиотиков, стимуляции роста и развития растений, установки для облучения семян перед посевом, облучение яиц при инкубации, цыплят для стимуляции роста и созревания, повышение иммунобиологической реактивности организма, для ускорения созревания и повышения массы тела путем ускорения роста у животных, повышение сопротивляемости организма к неблагоприятным условиям внешней среды.

18. Факторы, влияющие на степень лучевого поражения организма при внешнем облучении

1. Возраст животного.

2. Исходное функциональное состояние организма.

3. Доза и мощность дозы облучения.

4. Вид животного.

5. Заболевание различными заразными и незаразными болезнями.

19. Острая лучевая болезнь. Особенности течения у различных видов животных

ОЛБ – общее заболевание, возникающее после однократного или повторного облучения значительными дозами в относительно короткий промежуток времени. Однократное – 4 дня после взрыва.

Степени: легкая – 150-200 Р, средней тяжести – 200-400 Р, тяжелая – 400-600 Р, крайне тяжелая > 600 Р.

КРС – повышение Т на 1 град., диарея, лихорадка и гибель через 4-7 дней, 7-10 дней без симптомов, слабая диарея, через 14 дней лихорадка, общая слабость, отеки, депрессия, повышение ЧСС и ЧДД, за 1-2 дня продолжительные позывы к дефекации, выделения из ОД, хрипы. Выздоровление 30-40 дней.

Лошади – 2 дня удовлетворительное состояние, угнетение, снижение аппетита, раздражительность, гиперстезия, судороги, отеки, изъязвления, кровоизлияния, конъюнктивиты, кератит, помутнение и язвы роговицы. Возможны летальные исходы с признаками лучевой болезни через 3-5 лет.

МРС – раздражительность, снижение аппетита, диарея, 10-15 дней латентного периода, общее угнетение, болезненность кожи, выпадение шерсти, серозный ринит, нарушение функции ЖКТ, повышение Т, снижение упитанности.

Свиньи – через 10 дней кровоизлияния на коже, отеки, нарушение координации движений, одышка, слабость, кровотечения из носа, кровянистый кал.

Куры – дрожание, угнетение, вытягивание шеи, отек сережек и гребешков, серозное воспаление слизистых, зеленоватый кал, гибель до 3 недели.

20. Хроническая лучевая болезнь животных. Особенности развития и течения

Возникает в результате многократно повторяющегося в течение длительного времени внешнего облучения малыми дозами. Поражаются все системы и органы организма.

Легкая степень заболевания – функциональные нарушения нервно-рефлекторного порядка.

Средняя степень – нарушения регуляторных свойств, отчетливая функциональная недостаточность, особенно крови, органов пищеварения, нервной, сердечно-сосудистой и других систем.

Тяжелая степень – морфологические поражения деструкторного и атрофического порядка в органах кроветворения, ЖКТ, нервной и других системах.

Диагностика развита слабо. Диагноз ставится по совокупности признаков с учетом радиационной обстановки.

Лечение должно быть направлено на повышение общей резистентности животного, специфические средства и методы терапии не разработаны.

21. Профилактика и лечение лучевой болезни

Вывод животных из зоны радиационного поражения, использование защитных повязок, убежища.

В период первичной реакции организма на лучевую травму вводят 40 %-ный раствор уротропина 3-4 раза в день из расчета 5-10 г для КРС и лошадей, 2-5 г для свиней и МРС и 0,5-1 г сухого вещества.

Переливане крови, введение хлористого кальция для ограничения кровоточивости пораженных сосудов. Стимуляция гесмопоэза: цианокобаламин в комбинации с фолиевой кислотой, камполон, лейкоген, антианемин, трансплантация костного мозга.

Производят удаление некротизированных и пораженных участков тканей, хирургическую обработку ран. Хирургические вмешательства производят только латентный или в период ремиссии.

22. Лучевые ожоги животных

Возникают при облучении большим количеством излучения после оседания РВ после ядерных взрывов. Наибольшие поражения – у животных с коротким волосяным покровом.

Первичная реакция до 3 суток – гиперемия, отек, болезненность, зуд, расчесы.

Скрытый – повышенная потливость и зуд, от нескольких часов до нескольких недель.

Выраженная воспалительная реакция кожи – умеренная эритема, шелушение, гиперемия, отек, язвы, эрозии, повышение температуры тела.

Восстановление – 1-4 месяца, могут наблюдаться атрофия, выраженная болевая реакция.

Лечение: ранняя ветеринарная обработка животных, новокаиновые блокады, применение ганглиоблокирующих и нейролептических препаратов, переливания крови, тканевые пересадки. Местно ожоги лечат по типу термических ожогов.

23. Генетическое действие ИИ

Под действием ИИ структура гена может изменяться. Различают генные, геномные и хромосомные мутации.

Генные – повреждается (мутирует) только 1 ген, еще их называют точковыми: транслокация, дубликация, делеции, инверсии.

Хромосомные – изменение структуры хромосом.

Геномные – мутации, связанные с изменением числа хромосом.

Наиболее опасными в генетическом отношении считают стронций-90, цезий-137, углерод-14.

24. Предмет и задачи радиотоксикологии

1) изучение путей поступления, закономерностей распределения в организме и включения в молекулярные структуры тканей (инкорпорирование);

2) накопление (депонирование) радиоактивных изотопов в различных органах и выведение их из организма;

3) исследование биологического действия инкорпорированных радиоактивных изотопов;

4) разработка методов и средств предотвращения резорбции радиоактивных изотопов м ускоряющее их выведение из организма.

25. Соматическое действие ИИ

ИИ вызывает изменение лейкограммы у животных, приводит к появлению патологических форм клеток крови, замедляет процесс образования новых клеток или прекращает его. Происходит помутнение хрусталика глаза. Возможность восстановления его определяется условиями содержания животных, производимых профилактических и лечебных мероприятий, возраста животных, поскольку у молодняка регенеративные процессы протекают значительно быстрее.

ИИ вызывает старение тканей, в первую очередь – соединительной. Это происходит потому, что первично нарушается нормальный метаболизм веществ, затем происходят трофические сдвиги, нарушения регуляции, атрофии, деструкции и некрозы.

26. Типы распределения радионуклидов в организме. Понятие о критическом органе

Поведение всосавшихся в кровь радионуклидов определяется биогенной значимостью стабильных изотопов данных элементов к определенным тканям и органам и физико-химическими свойствами радионуклидов – положением элементов в периодической системе Д. И. Менделеева, валентной формой изотопа и растворимостью химического соединения, способностью образовывать коллоидные соединения в крови и тканях и другими факторами.

У беременных самок РИ проходят через плаценту и откладываются в тканях плода, у молодых животных происходит интенсивное инкорпорирование и депонирование РИ в тканях организма, в очагах воспаления (до 10 раз больше).

Критический орган – это орган, в котором происходят максимальные изменения под действием максимальной концентрации РИ. При поступлении через органы дыхания, пищеварения и кожу – легкие, ЖКТ, кожа. При поступлении йода – щитовидная железа, стронций, кальций и радий – кости, для всех – половые органы и половые железы.

27. Накопление и выведение РН из организма. Эффективный период полувыведения

Попавшие в организм РИ выводятся аналогично их стабильным изотопам с укалом, мочой, молоком, яйцами и другими путями.

Биологический период полувыведения – период, в течение которого из организма выводится половина поступившего элемента.

Эффективный период полувыведения выражает фактическую убыль РИ в организме с учетом ускорения уменьшения их концентрации за счет радиоактивного распада по закону радиоактивного распада.

См. № 26.

28. факторы, влияющие на степень лучевого поражения при внутреннем облучении организма

Чем больше энергия излучения РИ, тем больше степень поражения – это главная характеристика, определяющая степень токсичности радиоизотопа.

Линейная передача энергии – чем короче пробег частицы и выше энергия, тем больше вреда РИ способен нанести организму. У альфа-частиц и протонов плотность ионизации очень высокая, у бета-частиц и гамма-лучей она низкая.

Коэффициент относительной биологической эффективности – необходим для выражения различий биологического действия излучений с неодинаковыми значениями ЛПЭ. Значения его взяты относительно рентгеновских лучей и зависят от облучаемого объекта и признака. Например, при общем облучении организма для быстрый нейтронов ОБЭ равен 10, а при местном облучении половых желез – 35.

Период полураспада – наибольшую опасность для млекопитающих и птиц представляют РИ с периодом полураспада от нескольких дней до нескольких десятков лет. Это связано с тем, что РИ с очень коротким периодом полураспада не сможет достигнуть организма, а элемент с достаточно большим периодом полураспада просто не способен вызвать лучевую болезнь, так как его излучение не подействует. Однако следует помнить, что действие РИ с большим периодом полураспада может значительно усиливаться дочерними элементами с меньшей длиной периода.

29. Использование РВ в медицине, ветеринарии и сельском хозяйстве

Метод меченых атомов основан на использовании химических соединений, в структуру которых включены радиоактивные элементы. Основан на том, что РИ ведут себя в организме так же, как и стабильные изотопы.

Авторадиография – метод получения фотографических изображений радиоактивных элементов, находящихся в исследуемом объекте.

РВ используются для определения особенностей обмена веществ у животных, влияния кормления на продуктивность, получение представления о динамике обменных процессов в организме, разрешении вопросов взаимопревращаемости соединений, промежуточного обмена.

Диагностика нарушений скорости кровотока, радиотерапия для больных со злокаественными опухолями, глазной аппликатор Белова для использования при глазных болезнях, ускорение минерального обмена при переломах, фармакодинамика и фармакокинетика.

Стерилизация при помощи гамма-лучей, консервирование пищевых продуктов.

30. Метаболизм и токсикология йода-131

Йод как химически активный элемент реагирует со многими веществами, образуя йодиды, йодаты и перийодаты.

Поступает в организм животного через органы пищеварения, дыхания, кожу, конъюнктиву, раны и др.

При попадании в организм полностью всасывается в кровь и на 60 % откладывается в щитовидной железе. При ядерном взрыве продукты йода составляют до 19 %.

Период полураспада 8,05 дня.

У лактирующих коров в 1 л молока переходит 1 % суточной дозы йода. В желток – 16 %, в белок – 1 %.

Токсическое действие – поражение щитовидной железы: разрушение, замещение паренхимы соединительной тканью. Снижается содержание РНК и ДНК в железе, нарушение расположения комплекса Гольджи, изменение активности некоторых ферментов.

Существенные изменения происходят в нервной и эндокринной системах: снижается температура тела, повышается нервная возбудимость, замедляется сердцебиение и увеличивается проницаемость кровеносных сосудов, жировое перерождение печени, функциональные и морфологические изменения в почках, органах размножения и эндокринных железах, замедление центров окостенения и роста костей в длину, учащение кариеса зубов и других видов костной патологии.

Снижается интенсивность яйцекладки у кур, качество яиц падает.

Снижается количество нейтрофилов, лимфоцитов, развивается анемия. В тяжелых случаях – лейкемия, тромбоцитопения, панцитопения, опухоли.

31. Цель и задачи радиометрической экспертизы объектов ветеринарного надзора и внешней среды

1. Контроль радиационного состояния внешней среды за счет естественных и искусственных радионуклидов.

2. Определение уровня радиационного фона в различных районах территории м выяснение их влияния на биологические объекты и биоценозы.

3. Предупреждение и недопущение поступления радионуклидов из внешней среды в организм животных в недопустимых количествах.

4. Предупреждение пищевого и технического использования сырых продуктов животного происхождения, содержащих радионуклиды в недопустимых концентрациях.

48. Закон радиоактивного распада

Количество любого радиоактивного вещества со временем уменьшается в результате радиоактивного распада.

Постоянная радиоактивного распада (λ) для определенного изотопа показывает, какая доля ядер распадается в единицу времени.

Средняя продолжительность жизни ядра (τ=1/λ).

Основной закон радиоактивного распада устанавливает, что за единицу времени распадается всегда одна и та же доля ядер, имеющихся в наличии:

, где Nt – количество радиоактивных ядер, оставшихся по прошествии времени t, N0 – исходное количество ядер в момент времени, е – основание натуральных логарифмов (2,72), λ – постоянная радиоактивного распада, t – промежуток времени, равный (t-t0).

33. Порядок подготовки к работе и работа на радиометрах

1. Заземлить установку. 2. Переключатель питания в положение «выкл.» 3. Переключатель высокого напряжения в «пределы 2000». 4. Регулятор высокого напряжения до упора против часовой стрелки. 5. Блок счетчика соединить со свинцовым домиком и пересчетной установкой соединительными кабелями. 6. Включить прибор в сеть. 7. Переключатель питания в положение «сеть». 8. Прогреть 3 мин. 9. Завести секундомер. 10. Нажать кнопку «пуск» и установить секундомер на 0, неоновые лампочки гаснут. 11. Переключатель рода работ «проверка ламп». 12. «Контроль». 13. Сбросить показания нажатием кнопки «сброс». 14. Нажать пуск и посчитать не более 200 импульсов. 15. Повторно нажать «пуск». Разница между ЭМС и лампочками не дб.±1. 16. Переключатель в положение «работа» и сбросить все показания. 17. Регулятор «плато» установить по вольтметру в рабочее напряжение счетчика. 18. Определить скорость счета от фона. 19. Поместить под счетчик РВ и определить скорость от препарата и фона (имп./мин). 20. Вычесть фон установки. 21. Снять высокое напряжение ручкой потенциометра, убрать радиоактивный источник, выключить питание, переключатель «сеть» и выдернуть штепсельную вилку.

34. Относительная биологическая эффективность излучения и эквивалентная доза

Коэффициент относительной биологической эффективности – необходим для выражения различий биологического действия излучений с неодинаковыми значениями ЛПЭ. Значения его взяты относительно рентгеновских лучей и зависят от облучаемого объекта и признака. Например, при общем облучении организма для быстрый нейтронов ОБЭ равен 10, а при местном облучении половых желез – 35.

Эквивалентная доза – количество поглощенной энергии любого вида ИИ с учетом биологического эффекта, характерного для каждого вида излучений.

46.Назначение и принцип работы прибора ДП-100

Радиометр ДП-100 питается от сети переменного тока, предназначен для определения радиоактивности препаратов при проведении биологических или гигиенических исследований с применением радиоактивных изотопов, радиохимических исследований при определении радиоактивности объектов зооветеринарного надзора.

Радиометр позволяет пересчитывать поступающие импульсы с частотой до 5000 имп./с, с коэффициентом пересчета 100. Объем регистрации – 100 тыс. импульсов.

36. Дозиметрия, ее задачи и цели

Это раздел ядерной физики и измерительной техники, в котором изучают величины, характеризующие действие ИИ на вещества, а также методы и приборы для его качественного и количественного определения.

Расчет и измерение дозы, создаваемой ионизирующим излучением в рассматриваемом объекте. Она изучает количественные эффекты, производимые ядерным излучением в веществе, а также устанавливают соотношения между активностью радиоактивного вещества и создаваемой им дозой.

37. Доза облучения и мощность дозы облучения

Доза излучения – величина энергии, поглощенной в единице объема облучаемого вещества.

Мощность дозы облучения – количество энергии, которое получил организм за единицу времени.

38. Метаболизм и токсикология стронция-90 и цезия-137

Стронций-90 в основном поглощается скелетом и костным мозгом. Большие дозы вызывают лучевую болезнь. Компенсаторные механизмы выражены слабо. Клиника: животных слабеют, падает аппетит, ЖК расстройства, падает ЖМ, нарушается структура кожи и шерстного покрова, кровоизлияния и язвы на слизистых, возбуждение, сменяющееся угнетением, слуховые и зрительные галлюцинации, облысения, поседения, изменения в костях, гиалиноз, утолщение стенок и сужение просвета кровеносных сосудов, мышечные волокна набухают и при тяжелых поражениях подвергаются жировому перерождению, повышение АД, полнокровье легких и пневмония, слюнотечение, периодические поносы, рвота, паралич кишечника.

Клинические признаки при поражениях цезием-137 сходны с гамма-облучением. Особенностью является равномерное распределение элемента по организму вне зависимости от вида животного.

ПДД внешнего, внутреннего облучения населения в обычное и военное время





41. Понятие об удельной радиоактивности и этапы ее определения

Это радиоактивность, приходящаяся на единицу массы или объема. Единицы измерения – Ки/мл, Ки/л, Ки/г, Ки/кг. Убыль радиоактивности любого элемента определяют по формуле, соответствующей основному закону радиоактивного распада:

, где Аt – активность препарата через t времени. Значения Т и t должны иметь одинаковую размерность.

42. Методы дозиметрического контроля

Радиоактивные излучения не воспринимаются органами чувств. Эти излучения могут быть детектированы при помощи приборов и приспособлений, работа которых основана на физико-химических процессах, возникающих при взаимодействии излучений с веществом.

В практике наиболее употребимы ионизационные детекторы излучений – ионизационные камеры, пропорциональные счетчики, счетчики Гейгера-Мюллера, коронные и искровые счетчики.

Другие методы предусматривают измерение вторичных эффектов, обусловленных ионизацией – фотографических, люминесцентный, химический, калориметрический и др.

43. Ионизационный метод измерения ИИ

Основан на использовании ионизационных счетчиков. При этом методе производят расчет количества импульсов для регистрации отдельных тяжелых заряженных частиц (альфа-частиц, протонов и т. д.) и токовые камеры для измерения интенсивности излучения, которая пропорциональна среднему току, проходящему через камеру, т. е. измеряется мощность дозы излучения.

Позволяет измерять не только дозу излучения, но и ее мощность.

44. Назначение и классификация дозиметрических приборов

Условно можно разделить на группы: радиометры, дозиметры, блоки и устройства аппаратуры для ядерно-физических исследований.

Ионизационные счетчики – служат для определения дозы и мощности дозы излучения.

Пропорциональные счетчики – используются для регистрации альфа-частиц, для определения энергии ядерных частиц, изучения их природы.

Счетчики Гейгера-Мюллера работают по принципу самостоятельного газоразряда и мало отличаются от пропорциональных счетчиков.

Галогенные счетчики – аналогично, возможно использование в полевых условиях, срок службы практически не ограничен, так как работа не связана с диссоциацией галогенного газа в камере. Существенный недостаток – значительное ограничение возможностей прибора из-за малого размера плато.
написать администратору сайта